Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
386 result(s) for "Graham, George W."
Sort by:
Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site
Single-atom catalysts are widely investigated heterogeneous catalysts; however, the identification of the local environment of single atoms under experimental conditions, as well as operando characterization of their structural changes during catalytic reactions are still challenging. Here, the preferred local coordination of Rh single atoms is investigated on TiO 2 during calcination in O 2 , reduction in H 2 , CO adsorption, and reverse water gas shift (RWGS) reaction conditions. Theoretical and experimental studies clearly demonstrate that Rh single atoms adapt their local coordination and reactivity in response to various redox conditions. Single-atom catalysts hence do not have static local coordinations, but can switch from inactive to active structure under reaction conditions, hence explaining some conflicting literature accounts. The combination of approaches also elucidates the structure of the catalytic active site during reverse water gas shift. This insight on the real nature of the active site is key for the design of high-performance catalysts. Single-atom catalysts are widely investigated heterogeneous catalysts; however, the identification of the local environment of single atoms under experimental conditions is still challenging. Here, the authors clearly demonstrate that Rh single atoms adapt their local coordination and reactivity in response to various redox conditions.
Structural evolution of atomically dispersed Pt catalysts dictates reactivity
The use of oxide-supported isolated Pt-group metal atoms as catalytic active sites is of interest due to their unique reactivity and efficient metal utilization. However, relationships between the structure of these active sites, their dynamic response to environments and catalytic functionality have proved difficult to experimentally establish. Here, sinter-resistant catalysts where Pt was deposited uniformly as isolated atoms in well-defined locations on anatase TiO2 nanoparticle supports were used to develop such relationships. Through a combination of in situ atomic-resolution microscopy- and spectroscopy-based characterization supported by first-principles calculations it was demonstrated that isolated Pt species can adopt a range of local coordination environments and oxidation states, which evolve in response to varied environmental conditions. The variation in local coordination showed a strong influence on the chemical reactivity and could be exploited to control the catalytic performance.Oxide-supported isolated Pt-group metal atoms as catalytic active sites are of interest because of their unique reactivity. Isolated Pt species are now shown to adopt a range of local coordination environments and oxidation states in response to environmental conditions.
In situ atomic-scale observation of oxygen-driven core-shell formation in Pt3Co nanoparticles
The catalytic performance of core-shell platinum alloy nanoparticles is typically superior to that of pure platinum nanoparticles for the oxygen reduction reaction in fuel cell cathodes. Thorough understanding of core-shell formation is critical for atomic-scale design and control of the platinum shell, which is known to be the structural feature responsible for the enhancement. Here we reveal details of a counter-intuitive core-shell formation process in platinum-cobalt nanoparticles at elevated temperature under oxygen at atmospheric pressure, by using advanced in situ electron microscopy. Initial segregation of a thin platinum, rather than cobalt oxide, surface layer occurs concurrently with ordering of the intermetallic core, followed by the layer-by-layer growth of a platinum shell via Ostwald ripening during the oxygen annealing treatment. Calculations based on density functional theory demonstrate that this process follows an energetically favourable path. These findings are expected to be useful for the future design of structured platinum alloy nanocatalysts. Core-shell platinum alloy nanoparticles are promising catalysts for oxygen reduction, however a deeper understanding of core-shell formation is still required. Here the authors report oxygen-driven formation of core-shell Pt 3 Co nanoparticles, seen at the atomic scale with in situ electron microscopy at ambient pressure.
Distribution of Pt single atom coordination environments on anatase TiO2 supports controls reactivity
Single-atom catalysts (SACs) offer efficient metal utilization and distinct reactivity compared to supported metal nanoparticles. Structure-function relationships for SACs often assume that active sites have uniform coordination environments at particular binding sites on support surfaces. Here, we investigate the distribution of coordination environments of Pt SAs dispersed on shape-controlled anatase TiO 2 supports specifically exposing (001) and (101) surfaces. Pt SAs on (101) are found on the surface, consistent with existing structural models, whereas those on (001) are beneath the surface after calcination. Pt SAs under (001) surfaces exhibit lower reactivity for CO oxidation than those on (101) surfaces due to their limited accessibility to gas phase species. Pt SAs deposited on commercial-TiO 2 are found both at the surface and in the bulk, posing challenges to structure-function relationship development. This study highlights heterogeneity in SA coordination environments on oxide supports, emphasizing a previously overlooked consideration in the design of SACs. Elucidating structure-function relationships is crucial for developing efficient catalysts. Here, the authors elucidate Pt single atom coordination environments on anatase TiO 2 and correlate active site structure with CO oxidation activity.
Dynamic structural evolution of supported palladium–ceria core–shell catalysts revealed by in situ electron microscopy
The exceptional activity for methane combustion of modular palladium–ceria core–shell subunits on silicon-functionalized alumina that was recently reported has created renewed interest in the potential of core–shell structures as catalysts. Here we report on our use of advanced ex situ and in situ electron microscopy with atomic resolution to show that the modular palladium–ceria core–shell subunits undergo structural evolution over a wide temperature range. In situ observations performed in an atmospheric gas cell within this temperature range provide real-time evidence that the palladium and ceria nanoparticle constituents of the palladium–ceria core–shell participate in a dynamical process that leads to the formation of an unanticipated structure comprised of an intimate mixture of palladium, cerium, silicon and oxygen, with very high dispersion. This finding may open new perspectives about the origin of the activity of this catalyst. There is currently renewed interest in the use of core–shell catalysts for methane combustion. Here, the authors perform an ex situ and in situ electron microscopy study to probe the structural evolution of palladium–cerium dioxide catalytic core–shell subunits over a wide temperature range.
Deconvolution of octahedral Pt3Ni nanoparticle growth pathway from in situ characterizations
Understanding the growth pathway of faceted alloy nanoparticles at the atomic level is crucial to morphology control and property tuning. Yet, it remains a challenge due to complexity of the growth process and technical limits of modern characterization tools. We report a combinational use of multiple cutting-edge in situ techniques to study the growth process of octahedral Pt 3 Ni nanoparticles, which reveal the particle growth and facet formation mechanisms. Our studies confirm the formation of octahedral Pt 3 Ni initiates from Pt nuclei generation, which is followed by continuous Pt reduction that simultaneously catalyzes Ni reduction, resulting in mixed alloy formation with moderate elemental segregation. Carbon monoxide molecules serve as a facet formation modulator and induce Ni segregation to the surface, which inhibits the (111) facet growth and causes the particle shape to evolve from a spherical cluster to an octahedron as the (001) facet continues to grow. Understanding the growth pathway of faceted alloy nanoparticles at the atomic level is crucial to morphology control and property tuning, but remains a challenge. Here, the authors reveal the particle growth and facet formation mechanisms of octahedral Pt 3 Ni nanoparticles using multiple cutting-edge in situ techniques.
Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts
The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal–support interactions can be exploited to optimize metal active-site properties are lacking. Here we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCO x ) on reducible oxide supports (TiO 2 and Nb 2 O 5 ) that induce oxygen-vacancy formation in the support and cause HCO x -functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO 2 -reduction selectivity. Developing approaches to tune the reactivity and selectivity of supported-metal heterogeneous catalysts is critical for designing environmentally friendly chemical conversion processes. A reversible structural catalyst transformation has now been identified that involves the adsorbate-mediated encapsulation of Rh nanoparticles by their oxide support and enables dynamic tuning of the selectivity of CO 2 reduction.
Evaluating Unsupervised Methods to Size and Classify Suspended Particles Using Digital In-Line Holography
Substantial information can be gained from digital in-line holography of marine particles, eliminating depth-of-field and focusing errors associated with standard lens-based imaging methods. However, for the technique to reach its full potential in oceanographic research, fully unsupervised (automated) methods are required for focusing, segmentation, sizing, and classification of particles. These computational challenges are the subject of this paper, in which the authors draw upon data collected using a variety of holographic systems developed at Plymouth University, United Kingdom, from a significant range of particle types, sizes, and shapes. A new method for noise reduction in reconstructed planes is found to be successful in aiding particle segmentation and sizing. The performance of an automated routine for deriving particle characteristics (and subsequent size distributions) is evaluated against equivalent size metrics obtained by a trained operative measuring grain axes on screen. The unsupervised method is found to be reliable, despite some errors resulting from oversegmentation of particles. A simple unsupervised particle classification system is developed and is capable of successfully differentiating sand grains, bubbles, and diatoms from within the surfzone. Avoiding miscounting bubbles and biological particles as sand grains enables more accurate estimates of sand concentrations and is especially important in deployments of particle monitoring instrumentation in aerated water. Perhaps the greatest potential for further development in the computational aspects of particle holography is in the area of unsupervised particle classification. The simple method proposed here provides a foundation upon which further development could lead to reliable identification of more complex particle populations, such as those containing phytoplankton, zooplankton, flocculated cohesive sediments, and oil droplets.
Transmission electron microscopy with atomic resolution under atmospheric pressures
Significant developments in micro-electrical-mechanical systems-based devices for use in transmission electron microscopy (TEM) sample holders have recently led to the commercialization of windowed gas cells that now enable the atomic-resolution visualization of phenomena occurring during gas–solid interactions at atmospheric pressure. In situ TEM study under atmospheric pressures provides unique information that is beneficial to correlating the structure–properties relationship of nanomaterials, particularly under real gaseous environments. We here provide a brief introduction of the advanced instrumentation of windowed gas cells and review recent progress of in situ atomic-resolution TEM study under atmospheric pressures, including some application examples of oxidation and reduction processes, dynamic growth of nanomaterials, catalytic reactions, and “operando” TEM.