Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
13 result(s) for "Graham, Lara V"
Sort by:
Disruption of the NKG2A:HLA-E Immune Checkpoint Axis to Enhance NK Cell Activation against Cancer
Ligation of the inhibitory receptor NKG2A by its ligand HLA-E negatively regulates the activation of natural killer (NK) cells, as well as subsets of CD8+ T cells and innate T cell populations. NKG2A has recently become a novel immune checkpoint target for the treatment of cancer and direct antibody mediated blockade of NKG2A function is currently under assessment in two phase 3 clinical trials. In addition to direct targeting, the NKG2A:HLA-E axis can also be disrupted indirectly via multiple different targeted cancer agents that were not previously recognised to possess immunomodulatory properties. Increased understanding of immune cell modulation by targeted cancer therapies will allow for the design of rational and more efficacious drug combination strategies to improve cancer patient outcomes. In this review, we summarise and discuss the various strategies currently in development which either directly or indirectly disrupt the NKG2A:HLA-E interaction to enhance NK cell activation against cancer.
NK Cells in the Lymph Nodes and Their Role in Anti-Tumour Immunity
The lymph nodes are vital to enable adaptive immune responses to infection. Natural killer (NK) cells are cytotoxic lymphocytes that directly kill cancer cells and modulate the activation of other immune cells during anti-tumour immune response. NK cells in the lymph nodes are involved in the regulation of T-cell and B-cell populations and the clearance of viral infections. In solid tumours, lymph nodes are a frequent site of metastasis and immune cell priming, whilst in haematological malignancies, tumour cells can proliferate in the lymph nodes. Thus, lymph nodes are an important site in anti-tumour immunity and therapy resistance. It is therefore crucial to identify strategies to increase recruitment and overcome suppression of NK cells in the lymph node microenvironment to improve tumour clearance. In this review, we summarise the literature interrogating NK cell phenotype and function in the lymph nodes in the context of infection and cancer and evaluate both current and potential strategies to mobilise and activate NK cells within the lymph nodes of cancer patients.
XPO1 inhibition sensitises CLL cells to NK cell mediated cytotoxicity and overcomes HLA-E expression
The first-in-class inhibitor of exportin-1 (XPO1) selinexor is currently under clinical investigation in combination with the BTK inhibitor ibrutinib for patients with chronic lymphocytic leukaemia (CLL) or non-Hodgkin lymphoma. Selinexor induces apoptosis of tumour cells through nuclear retention of tumour suppressor proteins and has also recently been described to modulate natural killer (NK) cell and T cell cytotoxicity against lymphoma cells. Here, we demonstrate that XPO1 inhibition enhances NK cell effector function against primary CLL cells via downregulation of HLA-E and upregulation of TRAIL death receptors DR4 and DR5. Furthermore, selinexor potentiates NK cell activation against CLL cells in combination with several approved treatments; acalabrutinib, rituximab and obinutuzumab. We further demonstrate that lymph node associated signals (IL-4 + CD40L) inhibit NK cell activation against CLL cells via upregulation of HLA-E, and that inhibition of XPO1 can overcome this protective effect. These findings allow for the design of more efficacious combination strategies to harness NK cell effector functions against CLL.
Regulation of dopamine-dependent transcription and cocaine action by Gadd45b
Exposure to drugs of abuse produces robust transcriptional and epigenetic reorganization within brain reward circuits that outlives the direct effects of the drug and may contribute to addiction. DNA methylation is a covalent epigenetic modification that is altered following stimulant exposure and is critical for behavioral and physiological adaptations to drugs of abuse. Although activity-related loss of DNA methylation requires the Gadd45 (Growth arrest and DNA-damage-inducible) gene family, very little is known about how this family regulates activity within the nucleus accumbens or behavioral responses to drugs of abuse. Here, we combined genome-wide transcriptional profiling, pharmacological manipulations, electrophysiological measurements, and CRISPR tools with traditional knockout and behavioral approaches in rodent model systems to dissect the role of Gadd45b in dopamine-dependent epigenetic regulation and cocaine reward. We show that acute cocaine administration induces rapid upregulation of Gadd45b mRNA in the rat nucleus accumbens, and that knockout or site-specific CRISPR/Cas9 gene knockdown of Gadd45b blocks cocaine conditioned place preference. In vitro, dopamine treatment in primary striatal neurons increases Gadd45b mRNA expression through a dopamine receptor type 1 (DRD1)-dependent mechanism. Moreover, shRNA-induced Gadd45b knockdown decreases expression of genes involved in psychostimulant addiction, blocks induction of immediate early genes by DRD1 stimulation, and prevents DRD1-mediated changes in DNA methylation. Finally, we demonstrate that Gadd45b knockdown decreases striatal neuron action potential burst duration in vitro, without altering other electrophysiological characteristics. These results suggest that striatal Gadd45b functions as a dopamine-induced gene that is necessary for cocaine reward memory and DRD1-mediated transcriptional activity.
Protocol for the development of guidance for stakeholder engagement in health and healthcare guideline development and implementation
Background Stakeholder engagement has become widely accepted as a necessary component of guideline development and implementation. While frameworks for developing guidelines express the need for those potentially affected by guideline recommendations to be involved in their development, there is a lack of consensus on how this should be done in practice. Further, there is a lack of guidance on how to equitably and meaningfully engage multiple stakeholders. We aim to develop guidance for the meaningful and equitable engagement of multiple stakeholders in guideline development and implementation. Methods This will be a multi-stage project. The first stage is to conduct a series of four systematic reviews. These will (1) describe existing guidance and methods for stakeholder engagement in guideline development and implementation, (2) characterize barriers and facilitators to stakeholder engagement in guideline development and implementation, (3) explore the impact of stakeholder engagement on guideline development and implementation, and (4) identify issues related to conflicts of interest when engaging multiple stakeholders in guideline development and implementation. Discussion We will collaborate with our multiple and diverse stakeholders to develop guidance for multi-stakeholder engagement in guideline development and implementation. We will use the results of the systematic reviews to develop a candidate list of draft guidance recommendations and will seek broad feedback on the draft guidance via an online survey of guideline developers and external stakeholders. An invited group of representatives from all stakeholder groups will discuss the results of the survey at a consensus meeting which will inform the development of the final guidance papers. Our overall goal is to improve the development of guidelines through meaningful and equitable multi-stakeholder engagement, and subsequently to improve health outcomes and reduce inequities in health.
Incidence of venous and arterial thromboembolic events reported in the tofacitinib rheumatoid arthritis, psoriasis and psoriatic arthritis development programmes and from real-world data
ObjectivesTofacitinib is a Janus kinase inhibitor for the treatment of rheumatoid arthritis (RA), psoriatic arthritis (PsA) and ulcerative colitis, and has been investigated in psoriasis (PsO). Routine pharmacovigilance of an ongoing, open-label, blinded-endpoint, tofacitinib RA trial (Study A3921133; NCT02092467) in patients aged ≥50 years and with ≥1 cardiovascular risk factor identified a higher frequency of pulmonary embolism (PE) and all-cause mortality for patients receiving tofacitinib 10 mg twice daily versus those receiving tumour necrosis factor inhibitors and resulted in identification of a safety signal for tofacitinib. Here, we report the incidence of deep vein thrombosis (DVT), PE, venous thromboembolism (VTE; DVT or PE) and arterial thromboembolism (ATE) from the tofacitinib RA (excluding Study A3921133), PsA and PsO development programmes and observational studies. Data from an ad hoc safety analysis of Study A3921133 are reported separately within.MethodsThis post-hoc analysis used data from separate tofacitinib RA, PsO and PsA programmes. Incidence rates (IRs; patients with events per 100 patient-years’ exposure) were calculated for DVT, PE, VTE and ATE, including for populations stratified by defined baseline cardiovascular or VTE risk factors. Observational data from the US Corrona registries (including cardiovascular risk factor stratification), IBM MarketScan research database and the US FDA Adverse Event Reporting System (FAERS) database were analysed.Results12 410 tofacitinib-treated patients from the development programmes (RA: n=7964; PsO: n=3663; PsA: n=783) were included. IRs (95% CI) of thromboembolic events among the all tofacitinib cohorts’ average tofacitinib 5 mg and 10 mg twice daily treated patients for RA, respectively, were: DVT (0.17 (0.09–0.27) and 0.15 (0.09–0.22)); PE (0.12 (0.06–0.22) and 0.13 (0.08–0.21)); ATE (0.32 (0.22–0.46) and 0.38 (0.28–0.49)). Among PsO patients, IRs were: DVT (0.06 (0.00–0.36) and 0.06 (0.02–0.15)); PE (0.13 (0.02–0.47) and 0.09 (0.04–0.19)); ATE (0.52 (0.22–1.02) and 0.22 (0.13–0.35)). Among PsA patients, IRs were: DVT (0.00 (0.00–0.28) and 0.13 (0.00–0.70)); PE (0.08 (0.00–0.43) and 0.00 (0.00–0.46)); ATE (0.31 (0.08–0.79) and 0.38 (0.08–1.11)). IRs were similar between tofacitinib doses and generally higher in patients with baseline cardiovascular or VTE risk factors. IRs from the overall Corrona populations and in Corrona RA patients (including tofacitinib-naïve/biologic disease-modifying antirheumatic drug-treated and tofacitinib-treated) with baseline cardiovascular risk factors were similar to IRs observed among the corresponding patients in the tofacitinib development programme. No signals of disproportionate reporting of DVT, PE or ATE with tofacitinib were identified in the FAERS database.ConclusionsDVT, PE and ATE IRs in the tofacitinib RA, PsO and PsA programmes were similar across tofacitinib doses, and generally consistent with observational data and published IRs of other treatments. As expected, IRs of thromboembolic events were elevated in patients with versus without baseline cardiovascular or VTE risk factors, and were broadly consistent with those observed in the Study A3921133 ad hoc safety analysis data, although the IR (95% CI) for PE was greater in patients treated with tofacitinib 10 mg twice daily in Study A3921133 (0.54 (0.32–0.87)), versus patients with baseline cardiovascular risk factors treated with tofacitinib 10 mg twice daily in the RA programme (0.24 (0.13–0.41)).
Genetic variants in microRNAs and breast cancer risk in African American and European American women
MicroRNAs (miRNAs) are an integral part of the post-transcriptional machinery of gene expression and have been implicated in the carcinogenic cascade. Single nucleotide polymorphisms (SNPs) in miRNAs and risk of breast cancer have been evaluated in populations of European or Asian ancestry, but not among women of African ancestry. Here we examined 145 SNPs in six miRNA processing genes and in 78 miRNAs which target genes known to be important in breast cancer among 906 African American (AA) and 653 European American (EA) cases and controls enrolled in the Women’s Circle of Health Study. Allele frequencies of most SNPs (87 %) differed significantly by race. We found a number of SNPs in miRNAs and processing genes in association with breast cancer overall or stratified by estrogen receptor (ER) status. Several associations were significantly different by race, with none of the associations being significant in both races. Using a polygenic risk score to combine the effects of multiple SNPs, we found significant associations with the score in each subgroup analysis. For ER-positive cancer, each unit increment of the risk score was associated with a 51 % increased risk in AAs (OR = 1.51, 95 % CI = 1.30–1.74, p  = 3.3 × 10 −8 ) and a 73 % increased risk in EAs (OR = 1.73, 95 % CI = 1.45–2.06, p  = 1.4 × 10 −9 ). These data show, for the first time, that miRNA-related genetic variations may underlie the etiology of breast cancer in both populations of African and European ancestries. Future studies are needed to validate our findings and to explore the underlying mechanisms.
Differentiating the effect of antipsychotic medication and illness on brain volume reductions in first-episode psychosis: A Longitudinal, Randomised, Triple-blind, Placebo-controlled MRI Study
Changes in brain volume are a common finding in Magnetic Resonance Imaging (MRI) studies of people with psychosis and numerous longitudinal studies suggest that volume deficits progress with illness duration. However, a major unresolved question concerns whether these changes are driven by the underlying illness or represent iatrogenic effects of antipsychotic medication. In this study, 62 antipsychotic-naïve patients with first-episode psychosis (FEP) received either a second-generation antipsychotic (risperidone or paliperidone) or a placebo pill over a treatment period of 6 months. Both FEP groups received intensive psychosocial therapy. A healthy control group (n = 27) was also recruited. Structural MRI scans were obtained at baseline, 3 months and 12 months. Our primary aim was to differentiate illness-related brain volume changes from medication-related changes within the first 3 months of treatment. We secondarily investigated long-term effects at the 12-month timepoint. From baseline to 3 months, we observed a significant group x time interaction in the pallidum (p < 0.05 FWE-corrected), such that patients receiving antipsychotic medication showed increased volume, patients on placebo showed decreased volume, and healthy controls showed no change. Across the entire patient sample, a greater increase in pallidal grey matter volume over 3 months was associated with a greater reduction in symptom severity. Our findings indicate that psychotic illness and antipsychotic exposure exert distinct and spatially distributed effects on brain volume. Our results align with prior work in suggesting that the therapeutic efficacy of antipsychotic medications may be primarily mediated through their effects on the basal ganglia.
When to replicate systematic reviews of interventions: consensus checklist
Replication is an essential part of the scientific method, yet replication of systematic reviews is too often overlooked, and done unnecessarily or poorly. Excessive replication (doing the same study repeatedly) is unethical and a cause of research wastage. This article provides consensus based guidance on when to replicate and not replicate systematic reviews.
MUFINS: multi-formalism interaction network simulator
Systems Biology has established numerous approaches for mechanistic modeling of molecular networks in the cell and a legacy of models. The current frontier is the integration of models expressed in different formalisms to address the multi-scale biological system organization challenge. We present MUFINS (MUlti-Formalism Interaction Network Simulator) software, implementing a unique set of approaches for multi-formalism simulation of interaction networks. We extend the constraint-based modeling (CBM) framework by incorporation of linear inhibition constraints, enabling for the first time linear modeling of networks simultaneously describing gene regulation, signaling and whole-cell metabolism at steady state. We present a use case where a logical hypergraph model of a regulatory network is expressed by linear constraints and integrated with a Genome-Scale Metabolic Network (GSMN) of mouse macrophage. We experimentally validate predictions, demonstrating application of our software in an iterative cycle of hypothesis generation, validation and model refinement. MUFINS incorporates an extended version of our Quasi-Steady State Petri Net approach to integrate dynamic models with CBM, which we demonstrate through a dynamic model of cortisol signaling integrated with the human Recon2 GSMN and a model of nutrient dynamics in physiological compartments. Finally, we implement a number of methods for deriving metabolic states from ~omics data, including our new variant of the iMAT congruency approach. We compare our approach with iMAT through the analysis of 262 individual tumor transcriptomes, recovering features of metabolic reprogramming in cancer. The software provides graphics user interface with network visualization, which facilitates use by researchers who are not experienced in coding and mathematical modeling environments.