Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"Granelli, Ingrid"
Sort by:
MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool
2014
Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target
in vivo
and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bind in the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.
In order to find a general treatment for cancer, this study found that MTH1 activity is essential for the survival of transformed cells, and isolated two small-molecule inhibitors of MTH1, TH287 and TH588 — in the presence of these inhibitors, damaged nucleotides are incorporated into DNA only in cancer cells, causing cytotoxicity and eliciting a beneficial response in patient-derived mouse xenograft models.
MTH1 is Ras-linked target for cancer therapy
Mutations in the
Ras
oncogene are associated with poor prognosis. It was known that overexpression of MTH1, a protein involved in preventing the incorporation of damaged bases into DNA, prevents Ras-induced senescence. In seeking to understand how damaged deoxynucleotides (dNTPs) promote cancer, Thomas Helleday and colleagues found that MTH1 activity is essential for the survival of transformed cells, and isolated two small-molecule MTH1 inhibitors, TH287 and TH588. In the presence of these hydrolase inhibitors, damaged nucleotides are incorporated into DNA only in cancer cells, causing cytotoxicity and eliciting a beneficial response in mouse xenograft cancer models. In a second study, Giulio Superti-Furga and colleagues sought to identify the target of a small molecule, SCH51344, that had been developed for use against
Ras
-dependent cancers and found that it inactivates MTH1. This allowed them to identify a new potent inhibitor of MTH1 that is enantiomer-selective, (
S
)-crizotinib. In the presence of this drug, tumour growth is suppressed in animal models of colon cancer.
Journal Article
Correction: Corrigendum: MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool
by
Jacques-Cordonnier, Marie-Caroline
,
Almlöf, Ingrid
,
Homan, Evert J.
in
631/337/1427
,
631/337/151
,
631/67/1059/602
2017
Nature 508, 215–221 (2014); doi:10.1038/nature13181 In this Article, the structure of compound TH650 (4) in Fig. 4a was drawn incorrectly; the correct structure is shown as Fig. 1 to this Corrigendum. Preparative, spectroscopic and biological data associated with this compound are as reported in theArticle, and the error does not influence any of the reported data or interpretations.
Journal Article