Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
55
result(s) for
"Granger, Joey P."
Sort by:
The Endothelin System: A Critical Player in the Pathophysiology of Preeclampsia
by
Granger, Joey P
,
Bakrania, Bhavisha A
,
Spradley, Frank T
in
Hypertension
,
Pathogenesis
,
Preeclampsia
2018
Purpose of ReviewPreeclampsia (PE) is a disorder of pregnancy typically characterized by new-onset hypertension and proteinuria after gestational week 20. Although preeclampsia is one of the leading causes of maternal and perinatal morbidity and death worldwide, the mechanisms of the pathogenesis of the disorder remain unclear and treatment options are limited. Placental ischemic events and the release of placental factors appear to play a critical role in the pathophysiology. These factors contribute to a generalized systemic vascular endothelial dysfunction and result in increased systemic vascular resistance and hypertension.Recent FindingsThere is increasing evidence to suggest that endothelin-1 (ET-1) in the maternal vascular endothelium is a critical final common pathway, whereby placental ischemic factors cause cardiovascular and renal dysfunction in the mother. Multiple studies report increased levels of ET-1 in PE. A number of experimental models of PE are also associated with elevated tissue levels of prepro-ET-1 mRNA. Moreover, experimental models of PE (placental ischemia, sFlt-1 excess, TNF-α excess, and AT1-AA infusion) have proven to be responsive to ET type A receptor antagonism. Recent studies also suggest that abnormalities in ET type B receptor signaling may also play a role in PE.SummaryAlthough numerous studies highlight the importance of the ET system in the pathogenesis of PE, further work is needed to determine whether ET receptor antagonists could provide an effective therapy for the management of this disease.
Journal Article
Immune Mechanisms Linking Obesity and Preeclampsia
2015
Preeclampsia (PE) is characterized by hypertension occurring after the twentieth week of pregnancy. It is a significant contributor to maternal and perinatal morbidity and mortality in developing countries and its pervasiveness is increasing within developed countries including the USA. However, the mechanisms mediating the pathogenesis of this maternal disorder and its rising prevalence are far from clear. A major theory with strong experimental evidence is that placental ischemia, resulting from inappropriate remodeling and widening of the maternal spiral arteries, stimulates the release of soluble factors from the ischemic placenta causing maternal endothelial dysfunction and hypertension. Aberrant maternal immune responses and inflammation have been implicated in each of these stages in the cascade leading to PE. Regarding the increased prevalence of this disease, it is becoming increasingly evident from epidemiological data that obesity, which is a state of chronic inflammation in itself, increases the risk for PE. Although the specific mechanisms whereby obesity increases the rate of PE are unclear, there are strong candidates including activated macrophages and natural killer cells within the uterus and placenta and activation in the periphery of T helper cells producing cytokines including TNF-α, IL-6 and IL-17 and the anti-angiogenic factor sFlt-1 and B cells producing the agonistic autoantibodies to the angiotensin type 1 receptor (AT1-aa). This review will focus on the immune mechanisms that have been implicated in the pathogenesis of hypertension in PE with an emphasis on the potential importance of inflammatory factors in the increased risk of developing PE in obese pregnancies.
Journal Article
Is there a role of proinflammatory cytokines on degenerin‐mediated cerebrovascular function in preeclampsia?
2022
Preeclampsia (PE) is associated with adverse cerebrovascular effects during and following parturition including stroke, small vessel disease, and vascular dementia. A potential contributing factor to the cerebrovascular dysfunction is the loss of cerebral blood flow (CBF) autoregulation. Autoregulation is the maintenance of CBF to meet local demands with changes in perfusion pressure. When perfusion pressure rises, vasoconstriction of cerebral arteries and arterioles maintains flow and prevents the transfer of higher systemic pressure to downstream microvasculature. In the face of concurrent hypertension, loss of autoregulatory control exposes small delicate microvessels to injury from elevated systemic blood pressure. While placental ischemia is considered the initiating event in the preeclamptic cascade, the factor(s) mediating cerebrovascular dysfunction are poorly understood. Elevated plasma proinflammatory cytokines, such as tumor necrosis factor α (TNF‐α) and interleukin‐17 (IL‐17), are potential mediators of autoregulatory loss. Impaired CBF responses to increases in systemic pressure are attributed to the impaired pressure‐induced (myogenic) constriction of small cerebral arteries and arterioles in PE. Myogenic vasoconstriction is initiated by pressure‐induced vascular smooth muscle cell (VSMC) stretch. Recent studies from our laboratory group indicate that proinflammatory cytokines impair the myogenic mechanism of CBF autoregulation via inhibition of vascular degenerin proteins, putative mediators of myogenic constriction in VSMCs. This brief review links studies showing the effect of proinflammatory cytokines on degenerin expression and CBF autoregulation to the pathological cerebral consequences of preeclampsia. This brief review summarises studies showing the effect of proinflammatory cytokines on vascular degenerin expression and cerebral blood flow autoregulation to the pathological cerebral consequences of preeclampsia. We propose a mechanism by which cytokines may inhibit one autoregulatory mechanism, referred to as myogenic, or pressure induced, vasoconstriction, which is a common mechanism underlying the cerebrovascular disorders of preeclampsia.
Journal Article
Sustained Elevated Circulating Activin A Impairs Global Longitudinal Strain in Pregnant Rats: A Potential Mechanism for Preeclampsia-Related Cardiac Dysfunction
by
Bakrania, Bhavisha A.
,
Granger, Joey P.
,
Palei, Ana C.
in
Activin
,
activin A
,
Activins - blood
2022
Mediators of cardiac injury in preeclampsia are not well understood. Preeclamptic women have decreased cardiac global longitudinal strain (GLS), a sensitive measure of systolic function that indicates fibrosis and tissue injury. GLS is worse in preeclampsia compared to gestational hypertension, despite comparable blood pressure, suggesting that placental factors may be involved. We previously showed that Activin A, a pro-fibrotic factor produced in excess by the placenta in preeclampsia, predicts impaired GLS postpartum. Here, we hypothesized that chronic excess levels of Activin A during pregnancy induces cardiac dysfunction. Rats were assigned to sham or activin A infusion (1.25–6 µg/day) on a gestational day (GD) 14 (n = 6–10/group). All animals underwent blood pressure measurement and comprehensive echocardiography followed by euthanasia and the collection of tissue samples on GD 19. Increased circulating activin A (sham: 0.59 ± 0.05 ng/mL, 6 µg/day: 2.8 ± 0.41 ng/mL, p < 0.01) was associated with impaired GLS (Sham: −22.1 ± 0.8%, 6 µg/day: −14.7 ± 1.14%, p < 0.01). Activin A infusion (6 µg/day) increased beta-myosin heavy chain expression in heart tissue, indicating cardiac injury. In summary, our findings indicate that increasing levels of activin A during pregnancy induces cardiac dysfunction and supports the concept that activin A may serve as a possible mediator of PE-induced cardiac dysfunction.
Journal Article
Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia
by
Ryan, Michael J.
,
Murphy, Sydney R.
,
Granger, Joey P.
in
Blood pressure
,
Cytokines - immunology
,
Endothelium - physiopathology
2007
Reduced uterine perfusion pressure during pregnancy is an important initiating event in preeclampsia. Inflammatory cytokines are thought to link placental ischemia with cardiovascular and renal dysfunction. Supporting a role for cytokines are findings of elevated tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 plasma levels in preeclamptic women. Blood pressure regulatory systems (eg, renin-angiotensin system [RAS] and sympathetic nervous system) interact with proinflammatory cytokines, which affect angiogenic and endothelium-derived factors regulating endothelial function. Chronic reductions in placental perfusion in pregnant rats are associated with enhanced TNF-alpha and IL-6 production. Chronic infusion of TNF-alpha or 11-6 into normal pregnant rats significantly increases arterial pressure and impairs renal hemodynamics. TNF-alpha activates the endothelin system in placental, renal, and vascular tissues, and IL-6 stimulates the RAS. These findings suggest that inflammatory cytokines elevate blood pressure during pregnancy by activating multiple neurohumoral and endothelial factors.
Journal Article
The angiotensin II type I receptor contributes to impaired cerebral blood flow autoregulation caused by placental ischemia in pregnant rats
by
Duncan, Jeremy
,
Fan, Fan
,
LaMarca, Babette B.
in
Abdomen
,
Anesthesia
,
Angiotensin AT1 receptors
2019
Background
Placental ischemia and hypertension, characteristic features of preeclampsia, are associated with impaired cerebral blood flow (CBF) autoregulation and cerebral edema. However, the factors that contribute to these cerebral abnormalities are not clear. Several lines of evidence suggest that angiotensin II can impact cerebrovascular function; however, the role of the renin angiotensin system in cerebrovascular function during placental ischemia has not been examined. We tested whether the angiotensin type 1 (AT1) receptor contributes to impaired CBF autoregulation in pregnant rats with placental ischemia caused by surgically reducing uterine perfusion pressure.
Methods
Placental ischemic or sham operated rats were treated with vehicle or losartan from gestational day (GD) 14 to 19 in the drinking water. On GD 19, we assessed CBF autoregulation in anesthetized rats using laser Doppler flowmetry.
Results
Placental ischemic rats had impaired CBF autoregulation that was attenuated by treatment with losartan. In addition, we examined whether an agonistic autoantibody to the AT1 receptor (AT1-AA), reported to be present in preeclamptic women, contributes to impaired CBF autoregulation. Purified rat AT1-AA or vehicle was infused into pregnant rats from GD 12 to 19 via mini-osmotic pumps after which CBF autoregulation was assessed. AT1-AA infusion impaired CBF autoregulation but did not affect brain water content.
Conclusions
These results suggest that the impaired CBF autoregulation associated with placental ischemia is due, at least in part, to activation of the AT1 receptor and that the RAS may interact with other placental factors to promote cerebrovascular changes common to preeclampsia.
Journal Article
Placental ischemia in pregnant rats impairs cerebral blood flow autoregulation and increases blood–brain barrier permeability
2014
Cerebrovascular events contribute to ~40% of preeclampsia/eclampsia‐related deaths, and neurological symptoms are common among preeclamptic patients. We previously reported that placental ischemia, induced by reducing utero‐placental perfusion pressure, leads to impaired myogenic reactivity and cerebral edema in the pregnant rat. Whether the impaired myogenic reactivity is associated with altered cerebral blood flow (CBF) autoregulation and the edema is due to altered blood–brain barrier (BBB) permeability remains unclear. Therefore, we tested the hypothesis that placental ischemia leads to impaired CBF autoregulation and a disruption of the BBB. CBF autoregulation, measured in vivo by laser Doppler flowmetry, was significantly impaired in placental ischemic rats. Brain water content was increased in the anterior cerebrum of placental ischemic rats and BBB permeability, assayed using the Evans blue extravasation method, was increased in the anterior cerebrum. The expression of the tight junction proteins: claudin‐1 was increased in the posterior cerebrum, while zonula occludens‐1, and occludin, were not significantly altered in either the anterior or posterior cerebrum. These results are consistent with the hypothesis that placental ischemia mediates anterior cerebral edema through impaired CBF autoregulation and associated increased transmission of pressure to small vessels that increases BBB permeability leading to cerebral edema. e12134 Preeclampsia is associated with an increased risk for developing encephalopathies. A prevailing theory is that impaired cerebral blood flow autoregulation contributes to this process. Whether placental ischemia, commonly thought to be a major underlying factor in the development of preeclampsia, can cause impaired cerebral blood flow autoregulation is not clear. In this study, placental ischemia is experimentally induced to test this directly. The results show that placental ischemia in the pregnant rat causes marked impairment of cerebral blood flow autoregulation.
Journal Article
Endothelin: Key Mediator of Hypertension in Preeclampsia
by
Granger, Joey P
,
George, Eric M
in
Animals
,
Arterial hypertension. Arterial hypotension
,
Autoantibodies - metabolism
2011
Preeclampsia is a pregnancy-induced hypertensive disorder characterized by proteinuria and widespread maternal endothelial dysfunction. It remains one of the most common disorders in pregnancy and remains one of the leading causes of maternal and fetal morbidity. Recent research has revealed that placental insufficiency, resulting in hypoxia and ischemia, is a central causative pathway in the development of the disorder. In response, the placenta secretes soluble substances into the maternal circulation which are responsible for the symptomatic phase of the disease. Among the most well characterized factors in the disease pathology are the anti-angiogenic protein soluble fms-like tyrosine kinase-1 (sFlt-1), inflammatory cytokines, and agonistic angiotensin II type-1 receptor autoantibodies. Each of these factors has been shown to induce hypertension experimentally through the production of endothelin-1 (ET-1), a powerful vasoconstrictor. Antagonism of the endothelin-A receptor has proved beneficial in numerous animal models of gestational hypertension, and it remains an intriguing target for pharmacological intervention in preeclampsia.
American Journal of Hypertension advance online publication 16 June 2011;doi:10.1038/ajh.2011.99
Journal Article
Role of 20-Hydroxyeicosatetraenoic Acid in Mediating Hypertension in Response to Chronic Renal Medullary Endothelin Type B Receptor Blockade
2011
The renal medullary endothelin (ET-1) system plays an important role in the control of sodium excretion and arterial pressure (AP) through the activation of renal medullary ET-B receptors. We have previously shown that blockade of endothelin type B receptors (ET-B) leads to salt-sensitive hypertension through mechanisms that are not fully understood. One possible mechanism is through a reduction in renal medullary production of 20-hydroxyeicosatetraenoic acid (20-HETE). 20-HETE, a metabolite of arachidonic acid, has natriuretic properties similar to ET-B activation. While these findings suggest a possible interaction between ET-B receptor activation and 20-HETE production, it is unknown whether blockade of medullary ET-B receptors in rats maintained on a high sodium intake leads to reductions in 20-HETE production.
The effect of increasing sodium intake from low (NS = .8%) to high (HS = 8%) on renal medullary production of 20-HETE in the presence and absence of renal medullary ET-B receptor antagonism was examined. Renal medullary blockade of ET-B receptors resulted in salt sensitive hypertension. In control rats, blood pressure rose from 112.8±2.4 mmHg (NS) to 120.7±9.3 mmHg (HS). In contrast, when treated with an ET-B receptor blocker, blood pressure was significantly elevated from 123.7±3.2 (NS) to 164.2±7.1 (HS). Furthermore, increasing sodium intake was associated with elevated medullary 20-HETE (5.6±.8 in NS vs. 14.3±3.7 pg/mg in HS), an effect that was completely abolished by renal medullary ET-B receptor blockade (4.9±.8 for NS and 4.5±.6 pg/mg for HS). Finally, the hypertensive response to intramedullary ET-B receptor blockade was blunted in rats pretreated with a specific 20-HETE synthesis inhibitor.
These data suggest that increases in renal medullary production of 20-HETE associated with elevating salt intake may be, in part, due to ET-B receptor activation within the renal medulla.
Journal Article
Placental Ischemia Says “NO” to Proper NOS-Mediated Control of Vascular Tone and Blood Pressure in Preeclampsia
by
Spradley, Frank T.
,
Granger, Joey P.
,
Palei, Ana C.
in
Animals
,
Binding sites
,
Bioavailability
2021
In this review, we first provide a brief overview of the nitric oxide synthase (NOS) isoforms and biochemistry. This is followed by describing what is known about NOS-mediated blood pressure control during normal pregnancy. Circulating nitric oxide (NO) bioavailability has been assessed by measuring its metabolites, nitrite (NO2) and/or nitrate (NO3), and shown to rise throughout normal pregnancy in humans and rats and decline postpartum. In contrast, placental malperfusion/ischemia leads to systemic reductions in NO bioavailability leading to maternal endothelial and vascular dysfunction with subsequent development of hypertension in PE. We end this article by describing emergent risk factors for placental malperfusion and ischemic disease and discussing strategies to target the NOS system therapeutically to increase NO bioavailability in preeclamptic patients. Throughout this discussion, we highlight the critical importance that experimental animal studies have played in our current understanding of NOS biology in normal pregnancy and their use in finding novel ways to preserve this signaling pathway to prevent the development, treat symptoms, or reduce the severity of PE.
Journal Article