Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Granger, Vanessa"
Sort by:
Innate immune deficiencies are associated with severity and poor prognosis in patients with COVID-19
COVID-19 can cause acute respiratory distress syndrome, leading to death in many individuals. Evidence of a deleterious role of the innate immune system is accumulating, but the precise mechanisms involved remain unclear. In this study, we investigated the links between circulating innate phagocytes and severity in COVID-19 patients. We performed in-depth phenotyping of neutrophil and monocyte subpopulations and measured soluble activation markers in plasma. Additionally, anti-microbial functions (phagocytosis, oxidative burst, and NETosis) were evaluated on fresh cells from patients. Neutrophils and monocytes had a strikingly disturbed phenotype, and elevated concentrations of activation markers (calprotectin, myeloperoxidase, and neutrophil extracellular traps) were measured in plasma. Critical patients had increased CD13 low immature neutrophils, LOX-1 + and CCR5 + immunosuppressive neutrophils, and HLA-DR low downregulated monocytes. Markers of immature and immunosuppressive neutrophils were strongly associated with severity. Moreover, neutrophils and monocytes of critical patients had impaired antimicrobial functions, which correlated with organ dysfunction, severe infections, and mortality. Together, our results strongly argue in favor of a pivotal role of innate immunity in COVID-19 severe infections and pleads for targeted therapeutic options.
Nrf2 downregulates zymosan-induced neutrophil activation and modulates migration
Polymorphonuclear neutrophils (PMNs) are the first line of defense against pathogens and their activation needs to be tightly regulated in order to limit deleterious effects. Nrf2 (Nuclear factor (erythroïd-derived 2)-like 2) transcription factor regulates oxidative stress and/or represses inflammation in various cells such as dendritic cells or macrophages. However, its involvement in PMN biology is still unclear. Using Nrf2 KO mice, we thus aimed to investigate the protective role of Nrf2 in various PMN functions such as oxidative burst, netosis, migration, cytokine production and phagocytosis, mainly in response to zymosan. We found that zymosan induced Nrf2 accumulation in PMNs leading to the upregulation of some target genes including Hmox-1, Nqo1 and Cat. Nrf2 was able to decrease zymosan-induced PMN oxidative burst; sulforaphane-induced Nrf2 hyperexpression confirmed its implication. Tnfα, Ccl3 and Cxcl2 gene transcription was decreased in zymosan-stimulated Nrf2 KO PMNs, suggesting a role for Nrf2 in the regulation of proinflammatory cytokine production. However, Nrf2 was not involved in phagocytosis. Finally, spontaneous migration of Nrf2 KO PMNs was lower than that of WT PMNs. Moreover, in response to low concentrations of CXCL2 or CXCL12, Nrf2 KO PMN migration was decreased despite similar CXCR2 and CXCR4 expression and ATP levels in PMNs from both genotypes. Nrf2 thus seems to be required for an optimal migration. Altogether these results suggest that Nrf2 has a protective role in several PMN functions. In particular, it downregulates their activation in response to zymosan and is required for an adequate migration.
Human Neutrophil Response to Pseudomonas Bacteriophage PAK_P1, a Therapeutic Candidate
The immune system offers several mechanisms of response to harmful microbes that invade the human body. As a first line of defense, neutrophils can remove pathogens by phagocytosis, inactivate them by the release of reactive oxygen species (ROS) or immobilize them by neutrophil extracellular traps (NETs). Although recent studies have shown that bacteriophages (phages) make up a large portion of human microbiomes and are currently being explored as antibacterial therapeutics, neutrophilic responses to phages are still elusive. Here, we show that exposure of isolated human resting neutrophils to a high concentration of the Pseudomonas phage PAK_P1 led to a 2-fold increase in interleukin-8 (IL-8) secretion. Importantly, phage exposure did not induce neutrophil apoptosis or necrosis and did not further affect activation marker expression, oxidative burst, and NETs formation. Similarly, inflammatory stimuli-activated neutrophil effector responses were unaffected by phage exposure. Our work suggests that phages are unlikely to inadvertently cause excessive neutrophil responses that could damage tissues and worsen disease. Because IL-8 functions as a chemoattractant, directing immune cells to sites of infection and inflammation, phage-stimulated IL-8 production may modulate some host immune responses.
Circulating microbiome analysis in patients with perioperative anaphylaxis
BackgroundPerioperative anaphylaxis is a rare and acute systemic manifestation of drug-induced hypersensitivity reactions that occurs following anesthesia induction; the two main classes of drugs responsible for these reactions being neuromuscular blocking agents (NMBA) and antibiotics. The sensitization mechanisms to the drugs are not precisely known, and few risk factors have been described. A growing body of evidence underlines a link between occurrence of allergy and microbiota composition. However, no data exist on microbiota in perioperative anaphylaxis. The aim of this study was to compare circulating microbiota richness and composition between perioperative anaphylaxis patients and matched controls.MethodsCirculating 16s rDNA was quantified and sequenced in serum samples from 20 individuals with fully characterized IgE-mediated NMBA-related anaphylaxis and 20 controls matched on sex, age, NMBA received, type of surgery and infectious status. Microbiota composition was analyzed with a published bioinformatic pipeline and links with patients clinical and biological data investigated.ResultsAnalysis of microbiota diversity showed that anaphylaxis patients seem to have a richer circulating microbiota than controls, but no major differences of composition could be detected with global diversity indexes. Pairwise comparison showed a difference in relative abundance between patients and controls for Saprospiraceae, Enterobacteriaceae, Veillonellaceae, Escherichia-Shigella, Pseudarcicella, Rhodoferax , and Lewinella . Some taxa were associated with concentrations of mast cell tryptase and specific IgE.ConclusionWe did not find a global difference in terms of microbiota composition between anaphylaxis patient and controls. However, several taxa were associated with anaphylaxis patients and with their biological data. These findings must be further confirmed in different settings to broaden our understanding of drug anaphylaxis pathophysiology and identify predisposition markers.
Blood eosinophil cationic protein and eosinophil-derived neurotoxin are associated with different asthma expression and evolution in adults
BackgroundEosinophil-derived neurotoxin (EDN) and eosinophil cationic protein (ECP) are proteins released by activated eosinophils whose role in adult asthma remains unclear.ObjectiveTo study associations between ECP, EDN and various asthma characteristics in adults from the Epidemiological Study on the Genetics and Environment of Asthma (EGEA).MethodsPlasma ECP and EDN levels were measured by ELISA. Cross-sectional analyses were performed in 941 adults (43±16 years old, 39% with asthma) at EGEA2 (2003–2007). Longitudinal analyses investigated the associations between EDN level at EGEA2 and changes in asthma characteristics between EGEA2 and EGEA3 (2011–2013, n=817). We used generalised estimated equations adjusted for age, sex, smoking status and body mass index to take into account familial dependence.ResultsAt EGEA2, both high ECP and EDN levels were associated with current asthma (adjusted OR (aOR) (95% CI): 1.69 (1.35–2.12) and 2.12 (1.76–2.57)). Among asthmatics, high EDN level was associated with asthma attacks (aOR: 1.50 (1.13–1.99)), wheezing and breathlessness (aOR: 1.38 (1.05–1.80)), use of asthma treatments (aOR: 1.91 (1.37–2.68)) and bronchial hyper-responsiveness (aOR: 2.03 (1.38–2.97)), even after further adjustment on ECP. High ECP level was associated with high neutrophil count and tended to be associated with chronic bronchitis. High EDN level at EGEA2 was associated with persistent asthma (aOR: 1.62 (1.04–2.52)), nocturnal symptoms (aOR from 2.19 to 3.57), worsening wheezing and breathlessness (aOR: 1.97 (1.36–2.85)) and nocturnal shortness of breath (aOR: 1.44 (1.04–1.98)) between EGEA2 and EGEA3.ConclusionsEDN and ECP were associated with different asthma expression in adults. EDN could be a potential biomarker to monitor asthma evolution in adults.
Plasma thymic stromal lymphopoietin (TSLP) in adults with non-severe asthma: the EGEA study
Thymic stromal lymphopoietin (TSLP), a cytokine involved in severe asthma treatment, was never studied in non-severe asthma.Among 969 adults from a large epidemiological study, cross-sectional analyses showed that plasma TSLP levels were associated with increased age and BMI, male sex, smoking and high TSLP levels (one IQR increase) with current asthma and poor lung function. High TSLP levels were also associated with persistence of asthma attacks (aOR=2.14 (95% CI 1.23 to 3.72)) and dyspnoea (aOR=2.71 (95% CI 1.39 to 5.28)) 10 years later.Our results suggest that TSLP could be a cytokine of interest in non-severe asthma, and its determinants of circulating levels could be considered in asthma management.
Human Neutrophil Response to IPseudomonas/I Bacteriophage PAK_(P)1, a Therapeutic Candidate
The immune system offers several mechanisms of response to harmful microbes that invade the human body. As a first line of defense, neutrophils can remove pathogens by phagocytosis, inactivate them by the release of reactive oxygen species (ROS) or immobilize them by neutrophil extracellular traps (NETs). Although recent studies have shown that bacteriophages (phages) make up a large portion of human microbiomes and are currently being explored as antibacterial therapeutics, neutrophilic responses to phages are still elusive. Here, we show that exposure of isolated human resting neutrophils to a high concentration of the Pseudomonas phage PAK_P1 led to a 2-fold increase in interleukin-8 (IL-8) secretion. Importantly, phage exposure did not induce neutrophil apoptosis or necrosis and did not further affect activation marker expression, oxidative burst, and NETs formation. Similarly, inflammatory stimuli-activated neutrophil effector responses were unaffected by phage exposure. Our work suggests that phages are unlikely to inadvertently cause excessive neutrophil responses that could damage tissues and worsen disease. Because IL-8 functions as a chemoattractant, directing immune cells to sites of infection and inflammation, phage-stimulated IL-8 production may modulate some host immune responses.
Human Neutrophil Response to Pseudomonas Bacteriophage PAK_(P)1, a Therapeutic Candidate
The immune system offers several mechanisms of response to harmful microbes that invade the human body. As a first line of defense, neutrophils can remove pathogens by phagocytosis, inactivate them by the release of reactive oxygen species (ROS) or immobilize them by neutrophil extracellular traps (NETs). Although recent studies have shown that bacteriophages (phages) make up a large portion of human microbiomes and are currently being explored as antibacterial therapeutics, neutrophilic responses to phages are still elusive. Here, we show that exposure of isolated human resting neutrophils to a high concentration of the Pseudomonas phage PAK_P1 led to a 2-fold increase in interleukin-8 (IL-8) secretion. Importantly, phage exposure did not induce neutrophil apoptosis or necrosis and did not further affect activation marker expression, oxidative burst, and NETs formation. Similarly, inflammatory stimuli-activated neutrophil effector responses were unaffected by phage exposure. Our work suggests that phages are unlikely to inadvertently cause excessive neutrophil responses that could damage tissues and worsen disease. Because IL-8 functions as a chemoattractant, directing immune cells to sites of infection and inflammation, phage-stimulated IL-8 production may modulate some host immune responses.
Neutrophil expression of glucocorticoid-induced leucine zipper (GILZ) anti-inflammatory protein is associated with acute respiratory distress syndrome severity
Background Glucocorticoid-induced leucine zipper (GILZ) is a potent anti-inflammatory protein involved in neutrophil apoptosis and the resolution of inflammation. Given the numerous pathophysiologic roles of neutrophils in the acute respiratory distress syndrome (ARDS), we postulated that neutrophil GILZ expression might be induced during ARDS, to modulate the inflammatory process and participate in lung repair. Methods This single-center, prospective, observational cohort study took place in the surgical intensive care unit of Bichat Hospital (Paris, France) and involved 17 ARDS patients meeting the Berlin criteria at inclusion, and 14 ventilated controls without ARDS. Serial blood samples were obtained every 2 days until extubation or death (from 1 to 9 samples per patient). GILZ protein and gene expression was quantified in blood neutrophils, along with markers of inflammation (CRP, extracellular DNA) or its resolution (Annexin A1). Results Neutrophil GILZ expression was detected at the transcriptional and/or translational level in 9/17 ARDS patients (in particular 7/10 severe ARDS) and in 2/14 ventilated controls. The highest mRNA levels were observed in the most severely ill patients ( p  < 0.028). GILZ was expressed in about ¾ of the corticosteroid-treated patients and its expression could also occur independently of corticosteroids, suggesting that inflammatory signals may also induce neutrophil GILZ expression in vivo. Conclusions In this pilot study, we show for the first time that blood neutrophils from patients with ARDS can express GILZ, in keeping with an anti-inflammatory and regulatory endogenous role of GILZ in humans. Contrary to some markers of inflammation or its resolution, the levels of gilz gene expression were related to ARDS severity.
Human neutrophil response to Pseudomonas bacteriophages
The immune system offers several mechanisms of response to remove harmful microbes that invade the human body. As a first line of defense, neutrophils can remove pathogens by phagocytosis, inactivate them by the release of reactive oxygen species (ROS) or immobilize them by neutrophil extracellular traps (NETs). Although, recent studies have shown that bacteriophages (phages) make up a large portion of human microbiomes and are currently being explored as human antibacterial therapeutics, neutrophilic responses to phages are still elusive. Here, we show that exposure of isolated human resting neutrophils to high concentration of the Pseudomonas phage PAK_P1 led to a 2.8 fold increase in interleukin-8 (IL-8) secretion. Importantly, phage exposure did not further affect resting neutrophil apoptosis or induce necrosis, CD11 expression, oxidative burst, and NETs. Similarly, inflammatory stimuli activated neutrophil effector responses were unaffected by phage exposure. Our work suggest that phages are unlikely to inadvertently cause excessive neutrophil responses that could damage tissues and worsen disease. Because IL-8 functions as a chemoattractant directing immune cells to sites of infection and inflammation, phage-stimulated IL-8 production may boost host immune responses.