Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
11
result(s) for
"Granrath, Ross E."
Sort by:
Specialized interferon action in COVID-19
by
Galbraith, Matthew D.
,
Smith, Keith P.
,
Granrath, Ross E.
in
Biological Sciences
,
Blood - metabolism
,
C-reactive protein
2022
The impacts of interferon (IFN) signaling on COVID-19 pathology are multiple, with both protective and harmful effects being documented. We report here a multiomics investigation of systemic IFN signaling in hospitalized COVID-19 patients, defining the multiomics biosignatures associated with varying levels of 12 different type I, II, and III IFNs. The antiviral transcriptional response in circulating immune cells is strongly associated with a specific subset of IFNs, most prominently IFNA2 and IFNG. In contrast, proteomics signatures indicative of endothelial damage and platelet activation associate with high levels of IFNB1 and IFNA6. Seroconversion and time since hospitalization associate with a significant decrease in a specific subset of IFNs. Additionally, differential IFN subtype production is linked to distinct constellations of circulating myeloid and lymphoid immune cell types. Each IFN has a unique metabolic signature, with IFNG being the most associated with activation of the kynurenine pathway. IFNs also show differential relationships with clinical markers of poor prognosis and disease severity. For example, whereas IFNG has the strongest association with C-reactive protein and other immune markers of poor prognosis, IFNB1 associates with increased neutrophil to lymphocyte ratio, a marker of late severe disease. Altogether, these results reveal specialized IFN action in COVID-19, with potential diagnostic and therapeutic implications.
Journal Article
Trisomy 21 activates the kynurenine pathway via increased dosage of interferon receptors
2019
Trisomy 21 (T21) causes Down syndrome (DS), affecting immune and neurological function by ill-defined mechanisms. Here we report a large metabolomics study of plasma and cerebrospinal fluid, showing in independent cohorts that people with DS produce elevated levels of kynurenine and quinolinic acid, two tryptophan catabolites with potent immunosuppressive and neurotoxic properties, respectively. Immune cells of people with DS overexpress
IDO1
, the rate-limiting enzyme in the kynurenine pathway (KP) and a known interferon (IFN)-stimulated gene. Furthermore, the levels of IFN-inducible cytokines positively correlate with KP dysregulation. Using metabolic tracing assays, we show that overexpression of
IFN
receptors encoded on chromosome 21 contribute to enhanced IFN stimulation, thereby causing
IDO1
overexpression and kynurenine overproduction in cells with T21. Finally, a mouse model of DS carrying triplication of IFN receptors exhibits KP dysregulation. Together, our results reveal a mechanism by which T21 could drive immunosuppression and neurotoxicity in DS.
Down syndrome (DS) is caused by trisomy 21 (T21), but the underlying etiology of the related immune and neurological dysfunction is unclear. Here, the authors show that T21 activates the kynurenine pathway via increased interferon receptor copy number, which could contribute to DS pathophysiology.
Journal Article
Variegated overexpression of chromosome 21 genes reveals molecular and immune subtypes of Down syndrome
2024
Individuals with Down syndrome, the genetic condition caused by trisomy 21, exhibit strong inter-individual variability in terms of developmental phenotypes and diagnosis of co-occurring conditions. The mechanisms underlying this variable developmental and clinical presentation await elucidation. We report an investigation of human chromosome 21 gene overexpression in hundreds of research participants with Down syndrome, which led to the identification of two major subsets of co-expressed genes. Using clustering analyses, we identified three main molecular subtypes of trisomy 21, based on differential overexpression patterns of chromosome 21 genes. We subsequently performed multiomics comparative analyses among subtypes using whole blood transcriptomes, plasma proteomes and metabolomes, and immune cell profiles. These efforts revealed strong heterogeneity in dysregulation of key pathophysiological processes across the three subtypes, underscored by differential multiomics signatures related to inflammation, immunity, cell growth and proliferation, and metabolism. We also observed distinct patterns of immune cell changes across subtypes. These findings provide insights into the molecular heterogeneity of trisomy 21 and lay the foundation for the development of personalized medicine approaches for the clinical management of Down syndrome.
Here, the authors reveal variability in chromosome 21 gene overexpression among individuals with Down syndrome, identifying three distinct molecular subtypes. Each subtype exhibits unique biosignatures and immune profiles, offering new insights into the complex biology of Down syndrome.
Journal Article
Seroconversion stages COVID19 into distinct pathophysiological states
2021
COVID19 is a heterogeneous medical condition involving diverse underlying pathophysiological processes including hyperinflammation, endothelial damage, thrombotic microangiopathy, and end-organ damage. Limited knowledge about the molecular mechanisms driving these processes and lack of staging biomarkers hamper the ability to stratify patients for targeted therapeutics. We report here the results of a cross-sectional multi-omics analysis of hospitalized COVID19 patients revealing that seroconversion status associates with distinct underlying pathophysiological states. Low antibody titers associate with hyperactive T cells and NK cells, high levels of IFN alpha, gamma and lambda ligands, markers of systemic complement activation, and depletion of lymphocytes, neutrophils, and platelets. Upon seroconversion, all of these processes are attenuated, observing instead increases in B cell subsets, emergency hematopoiesis, increased D-dimer, and hypoalbuminemia. We propose that seroconversion status could potentially be used as a biosignature to stratify patients for therapeutic intervention and to inform analysis of clinical trial results in heterogenous patient populations.
Journal Article
JAK inhibition decreases the autoimmune burden in Down syndrome
2024
Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmunity and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined.
We report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS, including autoantibody profiling, cytokine analysis, and deep immune mapping. We also report the interim analysis of a Phase II clinical trial investigating the safety and efficacy of the JAK inhibitor tofacitinib through multiple clinical and molecular endpoints.
We demonstrate multi-organ autoimmunity of pediatric onset concurrent with unexpected autoantibody-phenotype associations in DS. Importantly, constitutive immune remodeling and hypercytokinemia occur from an early age prior to autoimmune diagnoses or autoantibody production. Analysis of the first 10 participants to complete 16 weeks of tofacitinib treatment shows a good safety profile and no serious adverse events. Treatment reduced skin pathology in alopecia areata, psoriasis, and atopic dermatitis, while decreasing interferon scores, cytokine scores, and levels of pathogenic autoantibodies without overt immune suppression.
JAK inhibition is a valid strategy to treat autoimmune conditions in DS. Additional research is needed to define the effects of JAK inhibition on the broader developmental and clinical hallmarks of DS.
NIAMS, Global Down Syndrome Foundation.
NCT04246372.
Journal Article
Trisomy 21 dysregulates T cell lineages toward an autoimmunity-prone state associated with interferon hyperactivity
by
Estrada, Belinda Enriquez
,
Rachubinski, Angela L.
,
Smith, Keith P.
in
Adult
,
Adults
,
Autoimmune diseases
2019
Trisomy 21 (T21) causes Down syndrome (DS), a condition characterized by high prevalence of autoimmune disorders. However, the molecular and cellular mechanisms driving this phenotype remain unclear. Building upon our previous finding that T cells from people with DS show increased expression of interferon (IFN)-stimulated genes, we have completed a comprehensive characterization of the peripheral T cell compartment in adults with DS with and without autoimmune conditions. CD8+ T cells from adults with DS are depleted of naïve subsets and enriched for differentiated subsets, express higher levels of markers of activation and senescence (e.g., IFN-γ, Granzyme B, PD-1, KLRG1), and overproduce cytokines tied to autoimmunity (e.g., TNF-α). Conventional CD4+ T cells display increased differentiation, polarization toward the Th1 and Th1/17 states, and overproduction of the autoimmunity-related cytokines IL-17A and IL-22. Plasma cytokine analysis confirms elevation of multiple autoimmunity-related cytokines (e.g., TNF-α, IL17A–D, IL-22) in people with DS, independent of diagnosis of autoimmunity. Although Tregs are more abundant in DS, functional assays show that CD8+ and CD4+ effector T cells with T21 are resistant to Treg-mediated suppression, regardless of Treg karyotype. Transcriptome analysis ofwhite blood cells and T cells reveals strong signatures of T cell differentiation and activation that correlate positively with IFN hyperactivity. Finally, mass cytometry analysis of 8 IFN-inducible phosphoepitopes demonstrates that T cell subsets with T21 show elevated levels of basal IFN signaling and hypersensitivity to IFN-α stimulation. Therefore, these results point to T cell dysregulation associated with IFN hyperactivity as a contributor to autoimmunity in DS.
Journal Article
Triplication of the interferon receptor locus contributes to hallmarks of Down syndrome in a mouse model
by
Rachubinski, Angela L.
,
Britton, Eleanor C.
,
Minter, Ross
in
631/136/2060
,
631/208/366
,
631/250/248
2023
Down syndrome (DS), the genetic condition caused by trisomy 21, is characterized by variable cognitive impairment, immune dysregulation, dysmorphogenesis and increased prevalence of diverse co-occurring conditions. The mechanisms by which trisomy 21 causes these effects remain largely unknown. We demonstrate that triplication of the interferon receptor (
IFNR
) gene cluster on chromosome 21 is necessary for multiple phenotypes in a mouse model of DS. Whole-blood transcriptome analysis demonstrated that
IFNR
overexpression associates with chronic interferon hyperactivity and inflammation in people with DS. To define the contribution of this locus to DS phenotypes, we used genome editing to correct its copy number in a mouse model of DS, which normalized antiviral responses, prevented heart malformations, ameliorated developmental delays, improved cognition and attenuated craniofacial anomalies. Triplication of the
Ifnr
locus modulates hallmarks of DS in mice, suggesting that trisomy 21 elicits an interferonopathy potentially amenable to therapeutic intervention.
A mouse model of Down syndrome (DS) highlights the importance of triplication of the
IFNR
gene cluster for a variety of DS-associated traits. Copy number correction resulted in amelioration of multiple phenotypes associated with the condition.
Journal Article
Trisomy 21 activates the kynurenine pathway via increased dosage of interferon receptors
by
Granrath, Ross E
,
Powers, Rani K
,
Smith, Keith P
in
Catabolites
,
Chromosome 21
,
Down's syndrome
2019
Trisomy 21 (T21) causes Down syndrome (DS), affecting immune and neurological function by unknown mechanisms. We report here the results of a large metabolomics study showing that people with DS produce elevated levels of kynurenine and quinolinic acid, two tryptophan catabolites with potent immunosuppressive and neurotoxic properties, respectively. We found that immune cells of people with DS overexpress IDO1, the rate-limiting enzyme in the kynurenine pathway (KP) and a known interferon (IFN)-stimulated gene. Furthermore, we found a positive correlation between levels of specific inflammatory cytokines and KP dysregulation. Using metabolic flux assays, we found that IFN stimulation causes IDO1 overexpression and kynurenine overproduction in cells with T21, dependent on overexpression of IFN receptors encoded on chromosome 21. Finally, KP dysregulation is conserved in a mouse model of DS carrying triplication of the IFN receptors. Altogether, these results reveal a mechanism by which T21 could drive immunosuppression and neurotoxicity in DS.
Interferon receptor gene dosage determines diverse hallmarks of Down syndrome
2022
Trisomy 21 causes Down syndrome, a condition characterized by cognitive impairments, immune dysregulation, and atypical morphogenesis. Using whole blood transcriptome analysis, we demonstrate that specific overexpression of four interferon receptors encoded on chromosome 21 associates with chronic interferon hyperactivity and systemic inflammation in Down syndrome. To define the contribution of interferon receptor overexpression to Down syndrome phenotypes, we used genome editing to correct interferon receptor gene dosage in mice carrying triplication of a large genomic region orthologous to human chromosome 21. Normalization of interferon receptor copy number attenuated lethal antiviral responses, prevented heart malformations, decreased developmental delays, improved cognition and normalized craniofacial anomalies. Therefore, interferon receptor gene dosage determines major hallmarks of Down syndrome, indicating that trisomy 21 elicits an interferonopathy amenable to therapeutic intervention.
Correction of interferon receptor gene dosage rescues multiple key phenotypes in a mouse model of trisomy 21.