Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
112
result(s) for
"Grasl‐Kraupp, Bettina"
Sort by:
Risk assessment of aflatoxins in food
by
del Mazo, Jesús
,
Schrenk, Dieter
,
Chipman, James Kevin
in
aflatoxin
,
Aflatoxin B1
,
Aflatoxins
2020
EFSA was asked to deliver a scientific opinion on the risks to public health related to the presence of aflatoxins in food. The risk assessment was confined to aflatoxin B1 (AFB1), AFB2, AFG1, AFG2 and AFM1. More than 200,000 analytical results on the occurrence of aflatoxins were used in the evaluation. Grains and grain‐based products made the largest contribution to the mean chronic dietary exposure to AFB1 in all age classes, while ‘liquid milk’ and ‘fermented milk products’ were the main contributors to the AFM1 mean exposure. Aflatoxins are genotoxic and AFB1 can cause hepatocellular carcinomas (HCCs) in humans. The CONTAM Panel selected a benchmark dose lower confidence limit (BMDL) for a benchmark response of 10% of 0.4 μg/kg body weight (bw) per day for the incidence of HCC in male rats following AFB1 exposure to be used in a margin of exposure (MOE) approach. The calculation of a BMDL from the human data was not appropriate; instead, the cancer potencies estimated by the Joint FAO/WHO Expert Committee on Food Additives in 2016 were used. For AFM1, a potency factor of 0.1 relative to AFB1 was used. For AFG1, AFB2 and AFG2, the in vivo data are not sufficient to derive potency factors and equal potency to AFB1 was assumed as in previous assessments. MOE values for AFB1 exposure ranged from 5,000 to 29 and for AFM1 from 100,000 to 508. The calculated MOEs are below 10,000 for AFB1 and also for AFM1 where some surveys, particularly for the younger age groups, have an MOE below 10,000. This raises a health concern. The estimated cancer risks in humans following exposure to AFB1 and AFM1 are in‐line with the conclusion drawn from the MOEs. The conclusions also apply to the combined exposure to all five aflatoxins.
This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2020.EN-1798/full
Journal Article
Risk assessment of ochratoxin A in food
by
del Mazo, Jesús
,
Schrenk, Dieter
,
Chipman, James Kevin
in
Age groups
,
Animal species
,
Biocompatibility
2020
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non‐genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health‐based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non‐neoplastic effects, a BMDL10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL10 based on the non‐neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2020.EN-1845/full
Journal Article
Update of the risk assessment of nickel in food and drinking water
by
del Mazo, Jesús
,
Schrenk, Dieter
,
Chipman, James Kevin
in
Adolescents
,
Bioavailability
,
Body weight
2020
The European Commission asked EFSA to update its previous Opinion on nickel in food and drinking water, taking into account new occurrence data, the updated benchmark dose (BMD) Guidance and newly available scientific information. More than 47,000 analytical results on the occurrence of nickel were used for calculating chronic and acute dietary exposure. An increased incidence of post‐implantation loss in rats was identified as the critical effect for the risk characterisation of chronic oral exposure and a BMDL10 of 1.3 mg Ni/kg body weight (bw) per day was selected as the reference point for the establishment of a tolerable daily intake (TDI) of 13 μg/kg bw. Eczematous flare‐up reactions in the skin elicited in nickel‐sensitised humans, a condition known as systemic contact dermatitis, was identified as the critical effect for the risk characterisation of acute oral exposure. A BMDL could not be derived, and therefore, the lowest‐observed‐adverse‐effect‐level of 4.3 μg Ni/kg bw was selected as the reference point. The margin of exposure (MOE) approach was applied and an MOE of 30 or higher was considered as being indicative of a low health concern. The mean lower bound (LB)/upper bound (UB) chronic dietary exposure was below or at the level of the TDI. The 95th percentile LB/UB chronic dietary exposure was below the TDI in adolescents and in all adult age groups, but generally exceeded the TDI in toddlers and in other children, as well as in infants in some surveys. This may raise a health concern in these young age groups. The MOE values for the mean UB acute dietary exposure and for the 95th percentile UB raises a health concern for nickel‐sensitised individuals. The MOE values for an acute scenario regarding consumption of a glass of water on an empty stomach do not raise a health concern.
This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2020.EN-1940/full
Journal Article
Risk assessment of N‐nitrosamines in food
2023
EFSA was asked for a scientific opinion on the risks to public health related to the presence of N‐nitrosamines (N‐NAs) in food. The risk assessment was confined to those 10 carcinogenic N‐NAs occurring in food (TCNAs), i.e. NDMA, NMEA, NDEA, NDPA, NDBA, NMA, NSAR, NMOR, NPIP and NPYR. N‐NAs are genotoxic and induce liver tumours in rodents. The in vivo data available to derive potency factors are limited, and therefore, equal potency of TCNAs was assumed. The lower confidence limit of the benchmark dose at 10% (BMDL10) was 10 μg/kg body weight (bw) per day, derived from the incidence of rat liver tumours (benign and malignant) induced by NDEA and used in a margin of exposure (MOE) approach. Analytical results on the occurrence of N‐NAs were extracted from the EFSA occurrence database (n = 2,817) and the literature (n = 4,003). Occurrence data were available for five food categories across TCNAs. Dietary exposure was assessed for two scenarios, excluding (scenario 1) and including (scenario 2) cooked unprocessed meat and fish. TCNAs exposure ranged from 0 to 208.9 ng/kg bw per day across surveys, age groups and scenarios. ‘Meat and meat products’ is the main food category contributing to TCNA exposure. MOEs ranged from 3,337 to 48 at the P95 exposure excluding some infant surveys with P95 exposure equal to zero. Two major uncertainties were (i) the high number of left censored data and (ii) the lack of data on important food categories. The CONTAM Panel concluded that the MOE for TCNAs at the P95 exposure is highly likely (98–100% certain) to be less than 10,000 for all age groups, which raises a health concern.
Journal Article
Update of the risk assessment of inorganic arsenic in food
by
Schrenk, Dieter
,
Chipman, James Kevin
,
Leblanc, Jean‐Charles
in
Arsenic
,
benchmark dose (BMD)
,
Benchmarks
2024
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Journal Article
Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements
by
Ceccatelli, Sandra
,
Rose, Martin
,
Oswald, Isabelle P.
in
Alkaloids
,
analysis
,
Analytical methods
2017
EFSA was asked by the European Commission to deliver a scientific opinion on the risks for human health related to the presence of pyrrolizidine alkaloids (PAs) in honey, tea, herbal infusions and food supplements and to identify the PAs of relevance in the aforementioned food commodities and in other feed and food. PAs are a large group of toxins produced by different plant species. In 2011, the EFSA Panel on Contaminants in the Food Chain (CONTAM Panel) assessed the risks related to the presence of PAs in food and feed. Based on occurrence data limited to honey, the CONTAM Panel concluded that there was a possible health concern for those toddlers and children who are high consumers of honey. A new exposure assessment including new occurrence data was published by EFSA in 2016 and was used to update the risk characterisation. The CONTAM Panel established a new Reference Point of 237 μg/kg body weight per day to assess the carcinogenic risks of PAs, and concluded that there is a possible concern for human health related to the exposure to PAs, in particular for frequent and high consumers of tea and herbal infusions. The Panel noted that consumption of food supplements based on PA‐producing plants could result in exposure levels too close (i.e. less than 100 times lower) to the range of doses known to cause severe acute/short term toxicity. From the analysis of the available occurrence data, the CONTAM Panel identified a list of 17 PAs of relevance for monitoring in food and feed. The Panel recommended continuing the efforts to monitor the presence of PAs in food and feed, including the development of more sensitive and specific analytical methods. A recommendation was also issued on the generation of data to identify the toxic and carcinogenic potency of the PAs commonly found in food.
Journal Article
Update of the risk assessment on 3‐monochloropropane diol and its fatty acid esters
2018
The CONTAM Panel updated the assessment of the risks for human health related to the presence of 3‐monochloropropane diol (3‐MCPD) and its fatty acid esters in food published in 2016 in view of the scientific divergence identified in the establishment of the tolerable daily intake (TDI) in the Joint FAO/WHO Expert Committee on Food Additives and Contaminants (FAO/WHO) report published in 2017. In this update, dose–response analysis was performed following the recent EFSA Scientific Committee guidance on the use of benchmark dose (BMD) approach in risk assessment, and a review of available data on developmental and reproduction toxicity was included. The outcome of this review indicates that in rats short‐term exposure to 3‐MCPD above 1 mg/kg body weight (bw) per day can induce reduced sperm motility associated with reduced male fecundity. Decreased sperm count and histopathological changes in the testis and epididymis were observed following longer treatment periods at higher doses. Regarding increased incidence kidney tubular hyperplasia, BMD analysis using model averaging resulted in a BMDL10 of 0.20 mg/kg bw per day in male rats, which was selected as the new Reference Point (RP) for renal effects. For the effects on male fertility, decreased sperm motility was selected as the most sensitive relevant endpoint and a BMDL05 of 0.44 mg/kg bw per day was calculated. The RP for renal effects was considered to derive an updated group TDI of 2 μg/kg bw per day for 3‐MCPD and its fatty acid esters and was considered protective also for effects on male fertility. The established TDI of 2 μg/kg bw per day is not exceeded in the adult population. A slight exceedance of the TDI was observed in the high consumers of the younger age groups and in particular for the scenarios on infants receiving formula only.
This publication is linked to the following EFSA Journal article: http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2016.4426/full
Journal Article
Risks for public health related to the presence of furan and methylfurans in food
by
De Meulenaer, Bruno
,
Schrenk, Dieter
,
Rose, Martin
in
2,5‐dimethylfuran
,
2‐methylfuran
,
3‐methylfuran
2017
The European Commission asked EFSA for a scientific evaluation on the risk to human health of the presence of furan and methylfurans (2‐methylfuran, 3‐methylfuran and 2,5‐dimethylfuran) in food. They are formed in foods during thermal processing and can co‐occur. Furans are produced from several precursors such as ascorbic acid, amino acids, carbohydrates, unsaturated fatty acids and carotenoids, and are found in a variety of foods including coffee and canned and jarred foods. Regarding furan occurrence, 17,056 analytical results were used in the evaluation. No occurrence data were received on methylfurans. The highest exposures to furan were estimated for infants, mainly from ready‐to‐eat meals. Grains and grain‐based products contribute most for toddlers, other children and adolescents. In adults, elderly and very elderly, coffee is the main contributor to dietary exposure. Furan is absorbed from the gastrointestinal tract and is found in highest amounts in the liver. It has a short half‐life and is metabolised by cytochrome P450 2E1 (CYP2E1) to the reactive metabolite, cis‐but‐2‐ene‐1,4‐dialdehyde (BDA). BDA can bind covalently to amino acids, proteins and DNA. Furan is hepatotoxic in rats and mice with cholangiofibrosis in rats and hepatocellular adenomas/carcinomas in mice being the most prominent effects. There is limited evidence of chromosomal damage in vivo and a lack of understanding of the underlying mechanism. Clear evidence for indirect mechanisms involved in carcinogenesis include oxidative stress, gene expression alterations, epigenetic changes, inflammation and increased cell proliferation. The CONTAM Panel used a margin of exposure (MOE) approach for the risk characterisation using as a reference point a benchmark dose lower confidence limit for a benchmark response of 10% of 0.064 mg/kg body weight (bw) per day for the incidence of cholangiofibrosis in the rat. The calculated MOEs indicate a health concern. This conclusion was supported by the calculated MOEs for the neoplastic effects.
Journal Article
Erucic acid in feed and food
2016
Erucic acid is the trivial name of the fatty acid cis‐13‐docosenoic acid and occurs at high concentrations mainly in the seeds of species of the Brassicaceae (e.g. rape seed or mustard seed). The European Commission requested EFSA to deliver a scientific opinion on the risks for animal and human health related to the presence of erucic acid in feed and food. For most humans, the main contributor to dietary exposure to erucic acid was the food group ‘Fine bakery wares’. In ‘Infants’, ‘Food for infants and small children’ was the main contributor to exposure. The heart is the principal target organ for toxic effects after exposure. Myocardial lipidosis was identified as the critical effect for chronic exposure to erucic acid. This effect is reversible and transient during prolonged exposure. A tolerable daily intake (TDI) of 7 mg/kg body weight (bw) per day for erucic acid was established, based on a no observed adverse effect level of 0.7 g/kg bw per day for lipidosis in young rats and newborn piglets. Mean chronic exposure of the different groups of the population did not exceed the TDI. The two highest 95th percentile dietary exposure levels were observed for infants (ranging from 1.7 to 7.4 mg/kg bw per day, minimum lower bound (LB) – maximum upper bound (UB)) and other children (ranging from 2.1 to 9.5 mg/kg bw per day, minimum LB – maximum UB), the last max UB estimate being above the TDI. This may indicate a risk for young individuals with high erucic acid exposure. In pigs, levels of erucic acid are unlikely to represent a health concern. However, for poultry, the small margin between the lowest observed adverse effect level (LOAEL) and the estimated exposure may indicate a health risk where maximum inclusion rates are applied. Due to the absence of adequate data, the risk for ruminants, horses, fish and rabbits could not be assessed.
Journal Article
Evaluation of the health risks related to the presence of cyanogenic glycosides in foods other than raw apricot kernels
by
Schrenk, Dieter
,
Chipman, James Kevin
,
Leblanc, Jean‐Charles
in
Acidosis
,
Acute effects
,
Age groups
2019
In 2016, the EFSA Panel on Contaminants in the Food Chain (CONTAM) published a scientific opinion on the acute health risks related to the presence of cyanogenic glycosides (CNGs) in raw apricot kernels in which an acute reference dose (ARfD) of 20 μg/kg body weight (bw) was established for cyanide (CN). In the present opinion, the CONTAM Panel concluded that this ARfD is applicable for acute effects of CN regardless the dietary source. To account for differences in cyanide bioavailability after ingestion of certain food items, specific factors were used. Estimated mean acute dietary exposures to cyanide from foods containing CNGs did not exceed the ARfD in any age group. At the 95th percentile, the ARfD was exceeded up to about 2.5‐fold in some surveys for children and adolescent age groups. The main contributors to exposures were biscuits, juice or nectar and pastries and cakes that could potentially contain CNGs. Taking into account the conservatism in the exposure assessment and in derivation of the ARfD, it is unlikely that this estimated exceedance would result in adverse effects. The limited data from animal and human studies do not allow the derivation of a chronic health‐based guidance value (HBGV) for cyanide, and thus, chronic risks could not be assessed.
This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2019.EN-1601/full
Journal Article