Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
21
result(s) for
"Grassa, Fausto"
Sort by:
Large Isotopic Shift in Volcanic Plume CO2 Prior to a Basaltic Paroxysmal Explosion
by
D’Arcy, Fiona
,
Aiuppa, Alessandro
,
Stix, John
in
Carbon 13
,
Carbon dioxide
,
Carbon dioxide concentration
2024
Carbon dioxide is a key gas to monitor at volcanoes because its concentration and isotopic signature can indicate changes to magma supply and degassing behavior prior to eruptions, yet carbon isotopic fluctuations at volcanic summits are not well constrained. Here we present δ13C results measured from plume samples collected at Stromboli volcano, Italy, by Uncrewed Aerial Systems (UAS). We found contrasting volcanic δ13C signatures in 2018 during quiescence (−0.36 ± 0.59‰) versus 10 days before the 3 July 2019 paroxysm (−5.01 ± 0.56‰). Prior to the eruption, an influx of CO2‐rich magma began degassing at deep levels (∼100 MPa) in an open‐system fashion, causing strong isotopic fractionation and maintaining high CO2/St ratios in the gas. This influx occurred between 10 days and several months prior to the event, meaning that isotopic changes in the gas could be detected weeks to months before unrest. Plain Language Summary Volcanoes produce gases which change composition depending on how active the volcano is. One of these gases, carbon dioxide, is known to change in proportion to other gases before an eruption occurs, but little is known about how the isotopes of carbon change leading up to an eruption. Using drones to reach the gaseous plume of Stromboli volcano, Italy, we have captured carbon dioxide both during an inactive phase in 2018 and during the lead‐up to a highly explosive eruption called a paroxysm in 2019. There is a stark difference in the carbon isotopes measured 10 days before the 3 July 2019 paroxysm as opposed to those measured in 2018. This is caused by the arrival of CO2‐rich magma which progressively degassed, leading to lighter carbon isotopes in the residual magma over time. This process could have started anywhere from 10 days to several months before the paroxysm. This provides a warning signal which can be detected weeks to months before an active period begins. Key Points Rapid collection of volcanic plume CO2 enabled by Uncrewed Aerial Systems A carbon isotopic anomaly was present two weeks prior to the Stromboli 2019 paroxysm High CO2 concentrations, elevated CO2/St, and light δ13C‐CO2 may precede paroxysms on timescales of months to weeks
Journal Article
Anatomy of thermal unrest at a hydrothermal system: case study of the 2021–2022 crisis at Vulcano
by
Pailot-Bonnétat, Sophie
,
Ganci, Gaetana
,
Diliberto, Iole Serena
in
Carbon dioxide
,
Datasets
,
Explosions
2023
Hydrothermal systems can generate phreatic and/or phreatomagmatic explosions with little warning. Understanding the temporal and spatial evolution of geophysical and geochemical signals at hydrothermal systems is crucial for detecting precursory signs to unrest and to inform on hazard. Thermal signatures of such systems are poorly defined because data records are often too short or discrete compared to activity timescales, which can be decadal. La Fossa system of Vulcano has been monitored since the 1980s and entered a period of unrest in 2021. We assessed the thermal signature of La Fossa using ground- and satellite-based data with various temporal and spatial scales. While continuously-recording stations provided continuous but point-based measurements, fumarole field vent surveys and infrared images obtained from satellite-flown sensors (ASTER and VIIRS) allowed lower temporal resolution but synoptic records to be built. By integrating this multi-resolution data set, precursory signs of unrest could retrospectively be detected from February to June 2021. Intensity of all unrest metrics increased during summer 2021, with an onset over a few days in September 2021. By September, seismic, CO2, SO2 and other geochemical metrics also indicated unrest, leading Civil Protection to raise the alert level to yellow on October 1. Heat flux, having been 4 MW in May 2019, increasing to 90 MW by September, and peaking at 120 MW in March 2022. We convolved our thermal data sets with all other monitoring data to validate a Vulcano Fossa Unrest Index (VFUI), framework of which can be potentially applied to any hydrothermal system. The VFUI highlighted four stages of unrest, none of which were clear in any single data set: background, precursory, onset and unrest. Onset was characterized by sudden release of fluids, likely caused by failure of sealed zones that had become pressurized during the precursory phase that began possibly as early as February 2021. Unrest has been ongoing for more than 18 months, and may continue for several more years. Our understanding of this system behavior has been due to hindsight, but demonstrates how multiparametric surveys can track and forecast unrest.
Journal Article
Stable Isotope Evaluation of Geothermal Gases from the Kızıldere and Tekke Hamam Geothermal Fields, Western Anatolia, Turkey
2022
Volatiles transported from the Earth’s interior to the surface through permeable faults provide insights on the gas composition of deep reservoirs, mixing and migration processes, and can also be applied as gas-geothermometer. Here, we present carbon (δ13C), hydrogen (δ2H) and nitrogen (δ15N) isotopic data of CO2, CH4, and N2 from gas samples collected from the Kızıldere and Tekke Hamam geothermal fields, located along the eastern segment of the Büyük Menderes Graben, Turkey. The stable isotopic composition of carbon (δ13C) ranges from +0.30 to +0.99‰ (PDB) for CO2 from Kızıldere and is slightly more variable (−0.95 to +1.3‰) in samples from Tekke Hamam. Carbon isotope data in combination with CO2/3He data reveal that ~97% (Tekke Hamam) to ~99% (Kızıldere) of CO2 derives from limestone sources, with the residual CO2 being magmatic in origin with no evidence for CO2 from organic sources. The slightly higher contribution of limestone-derived CO2 in Kızıldere, compared to Tekke Hamam can be attributed to the higher temperatures of the Kızıldere reservoir and resulting amplified fluid–limestone interaction, as well as helium depletion during phase separation for Kızıldere samples. In contrast to the carbon isotopic composition of CO2, the δ13C values of methane from Kızıldere and Tekke Hamam are clearly distinct and vary between −23.6 and −20.8‰ for Kızıldere and −34.4 and −31.7‰ for Tekke Hamam, respectively. The δ2H-CH4 composition is also distinct, measured as −126.7‰ for Kızıldere and −143.3‰ for Tekke Hamam. CO2-CH4 carbon isotope geothermometry calculations based on the isotopic fractionation of δ13C between the dominant component CO2 and the minor component CH4 reveals temperatures 20–40 °C and 100–160 °C higher than the bottom–hole temperatures measured for Tekke Hamam and Kızıldere, respectively. Based on the CO2-CH4 carbon isotope disequilibrium, unusual high methane concentrations of ~0.3 to 0.4 vol.-% and CH4/3He-δ13C-CH4 relationships we suggest thermal decomposition of late (Tekke Hamam) to over-mature (Kızıldere) organic matter and, to some extent, also abiogenic processes as principal source of methane. The N2/36Ar ratios of most samples reveal the existence of a non–atmospheric nitrogen component within the gas mixture issuing from both fields, in addition to a constant contribution of atmospheric derived nitrogen accompanied into the system via the meteoric recharge of the geothermal system. Based on the δ15N isotopic ratios (varying between −4.44‰ and 4.54‰), the non–atmospheric component seems to be a mixture of both sedimentary (crustal organic) and mantle nitrogen. The thick Pliocene sedimentary sequence covering the metamorphic basement is the likely major source for the thermogenic content of CH4 and crustal N2 gas content in the samples.
Journal Article
SANTORY: SANTORini’s Seafloor Volcanic ObservatorY
by
Petersen, Sven
,
Escartin, Javier
,
Longo, Manfredi
in
Biodiversity and Ecology
,
Earth Sciences
,
Environmental Sciences
2022
Submarine hydrothermal systems along active volcanic ridges and arcs are highly dynamic, responding to both oceanographic (e.g., currents, tides) and deep-seated geological forcing (e.g., magma eruption, seismicity, hydrothermalism, and crustal deformation, etc.). In particular, volcanic and hydrothermal activity may also pose profoundly negative societal impacts (tsunamis, the release of climate-relevant gases and toxic metal(loid)s). These risks are particularly significant in shallow (<1000m) coastal environments, as demonstrated by the January 2022 submarine paroxysmal eruption by the Hunga Tonga-Hunga Ha’apai Volcano that destroyed part of the island, and the October 2011 submarine eruption of El Hierro (Canary Islands) that caused vigorous upwelling, floating lava bombs, and natural seawater acidification. Volcanic hazards may be posed by the Kolumbo submarine volcano, which is part of the subduction-related Hellenic Volcanic Arc at the intersection between the Eurasian and African tectonic plates. There, the Kolumbo submarine volcano, 7 km NE of Santorini and part of Santorini’s volcanic complex, hosts an active hydrothermal vent field (HVF) on its crater floor (~500m b.s.l.), which degasses boiling CO 2 –dominated fluids at high temperatures (~265°C) with a clear mantle signature. Kolumbo’s HVF hosts actively forming seafloor massive sulfide deposits with high contents of potentially toxic, volatile metal(loid)s (As, Sb, Pb, Ag, Hg, and Tl). The proximity to highly populated/tourist areas at Santorini poses significant risks. However, we have limited knowledge of the potential impacts of this type of magmatic and hydrothermal activity, including those from magmatic gases and seismicity. To better evaluate such risks the activity of the submarine system must be continuously monitored with multidisciplinary and high resolution instrumentation as part of an in-situ observatory supported by discrete sampling and measurements. This paper is a design study that describes a new long-term seafloor observatory that will be installed within the Kolumbo volcano, including cutting-edge and innovative marine-technology that integrates hyperspectral imaging, temperature sensors, a radiation spectrometer, fluid/gas samplers, and pressure gauges. These instruments will be integrated into a hazard monitoring platform aimed at identifying the precursors of potentially disastrous explosive volcanic eruptions, earthquakes, landslides of the hydrothermally weakened volcanic edifice and the release of potentially toxic elements into the water column.
Journal Article
An Integrated Study of the Serpentinite-Hosted Hydrothermal System in the Pollino Massif (Southern Apennines, Italy)
2020
A comprehensive study of the serpentinite and associated veins belonging to the Frido Unit in the Pollino Massif (southern Italy) is presented here with the aim to provide new constraints about the hydrothermal system hosted by the accretionary wedge of the southern Apennines. The studied serpentinites are from two different sites: Fosso Arcangelo and Pietrapica. In both sites, the rocks show mylonitic-cataclastic structures and pseudomorphic and patch textures and are traversing by pervasive carbonate and quartz-carbonate veins. The mineralogical assemblage of serpentinites consists of serpentine group minerals (with a predominance of lizardite), amphiboles, pyroxene, chlorite, titanite, magnetite, and talc. In some samples, hydro-garnet was also detected and documented here for the first time. As for cutting veins, different mineralogical compositions were observed in the two sites: calcite characterizes the veins from Fosso Arcangelo, whereas quartz and dolomite are the principal minerals of the Pietrapica veins infill, suggesting a different composition of mineralizing fluids. Stable isotopes of C and O also indicate such a different chemistry. In detail, samples from the Pietrapica site are characterized by δ13C fluctuations coupled with a δ18O shift documenting calcite formation in an open-system where mixing between deep and shallow fluids occurred. Conversely, δ13C and δ18O of the Fosso Arcangelo veins show a decarbonation trend, suggesting their developing in a closed-system at deeper crustal conditions. Precipitation temperature calculated for both sites indicates a similar range (80 °C to 120 °C), thus suggesting carbonate precipitation within the same thermal system.
Journal Article
Large Isotopic Shift in Volcanic Plume CO 2 Prior to a Basaltic Paroxysmal Explosion
2024
Carbon dioxide is a key gas to monitor at volcanoes because its concentration and isotopic signature can indicate changes to magma supply and degassing behavior prior to eruptions, yet carbon isotopic fluctuations at volcanic summits are not well constrained. Here we present δ 13 C results measured from plume samples collected at Stromboli volcano, Italy, by Uncrewed Aerial Systems (UAS). We found contrasting volcanic δ 13 C signatures in 2018 during quiescence (−0.36 ± 0.59‰) versus 10 days before the 3 July 2019 paroxysm (−5.01 ± 0.56‰). Prior to the eruption, an influx of CO 2 ‐rich magma began degassing at deep levels (∼100 MPa) in an open‐system fashion, causing strong isotopic fractionation and maintaining high CO 2 /S t ratios in the gas. This influx occurred between 10 days and several months prior to the event, meaning that isotopic changes in the gas could be detected weeks to months before unrest. Volcanoes produce gases which change composition depending on how active the volcano is. One of these gases, carbon dioxide, is known to change in proportion to other gases before an eruption occurs, but little is known about how the isotopes of carbon change leading up to an eruption. Using drones to reach the gaseous plume of Stromboli volcano, Italy, we have captured carbon dioxide both during an inactive phase in 2018 and during the lead‐up to a highly explosive eruption called a paroxysm in 2019. There is a stark difference in the carbon isotopes measured 10 days before the 3 July 2019 paroxysm as opposed to those measured in 2018. This is caused by the arrival of CO 2 ‐rich magma which progressively degassed, leading to lighter carbon isotopes in the residual magma over time. This process could have started anywhere from 10 days to several months before the paroxysm. This provides a warning signal which can be detected weeks to months before an active period begins. Rapid collection of volcanic plume CO 2 enabled by Uncrewed Aerial Systems A carbon isotopic anomaly was present two weeks prior to the Stromboli 2019 paroxysm High CO 2 concentrations, elevated CO 2 /S t, and light δ 13 C‐CO 2 may precede paroxysms on timescales of months to weeks
Journal Article
The mud volcanoes at Santa Barbara and Aragona (Sicily, Italy): a contribution to risk assessment
2021
The Santa Barbara and Aragona areas are affected by mud volcanism (MV) phenomena, consisting of continuous or intermittent emission of mud, water, and gases. This activity could be interrupted by paroxysmal events, with an eruptive column composed mainly of clay material, water, and gases. They are the most hazardous phenomena, and today it is impossible to define the potential parameters for modelling the phenomenon. In 2017, two digital surface models (DSMs) were performed by drone in both areas, thus allowing the mapping of the emission zones and the covered areas by the previous events. Detailed information about past paroxysms was obtained from historical sources, and, with the analysis of the 2017 DSMs, a preliminary hazard assessment was carried out for the first time at two sites. Two potentially hazardous paroxysm surfaces of 0.12 and 0.20 km2 for Santa Barbara and Aragona respectively were defined. In May 2020, at Aragona, a new paroxysm covered a surface of 8721 m2. After this, a new detailed DSM was collected with the aim to make a comparison with the 2017 one. Since 2017, a seismic station was installed in Santa Barbara. From preliminary results, both seismic events and ambient noise showed a frequency of 5–10 Hz.
Journal Article
The influence of high pCO2 on otolith shape, chemical and carbon isotope composition of six coastal fish species in a Mediterranean shallow CO2 vent
by
Mirasole, Alice
,
Vizzini, Salvatrice
,
Capasso, Giorgio
in
Acidification
,
Animal populations
,
Barium
2017
Naturally acidified environments, such as CO
2
vents, are important sites to evaluate the potential effects of increased ocean acidification on marine ecosystems and biota. Here we assessed the effect of high CO
2
/low pH on otolith shape and chemical composition of six coastal fish species (
Chromis chromis
,
Coris julis
,
Diplodus vulgaris
,
Gobius bucchichi
,
Sarpa salpa
,
Symphodus ocellatus
) in a Mediterranean shallow CO
2
vent. Taking into consideration the major and trace elements found near the vent and the gradient of dissolved inorganic carbon, we compared the otolith chemical signatures of fish exposed long-term to elevated CO
2
emissions and reduced pH (mean pH 7.8) against fish living in two control sites (mean pH 8.2). A number of element:Ca ratios (Na:Ca, Mg:Ca, Mn:Ca, Cu:Ca, Zn:Ca, Sr:Ca, Ba:Ca and Pb:Ca), along with isotope ratios, were measured in otoliths (δ
13
C and δ
18
O) and water (δ
13
C
DIC
) samples. Additionally, we performed otolith outline shape and morphometric analysis to evaluate the effect of high CO
2
/low pH. We observed species-specific responses with regards to both shape and chemical signatures. Significant differences among sites were found in otolith shape (elliptical Fourier descriptors) of
G. bucchichi
and
D. vulgaris
. Elemental and isotopic signatures were also significantly different in these site attached species, though not for the other four. Overall, the carbon isotopic composition seems a good proxy to follow pH gradient in naturally acidified area. Ultimately, besides improving our knowledge of the effects of high CO
2
/low pH on otoliths, the present results contribute to our understanding on their use as natural tags.
Journal Article
The composition of gas emissions at Petite Terre (Mayotte, Comoros): inference on magmatic fingerprints
by
Liuzzo, Marco
,
Di Muro, Andrea
,
Ader, Magali
in
Airports
,
Archipelagoes
,
Biogenic vs abiogenic CO2 & CH4
2022
The Comoros archipelago is an active geodynamic region located in the Mozambique Channel between East continental Africa and Madagascar. The archipelago results from intra-plate volcanism, the most recent eruptions having occurred on the youngest island of Grande Comore and on the oldest one of Mayotte. Since 2018, the eastern submarine flank of Mayotte has been the site of one of the largest recent eruptive events on Earth in terms of erupted lava volume. On land, the most recent volcanic activity occurred in Holocene on the eastern side of Mayotte, corresponding to the small Petite Terre Island, where two main and persistent gas seep areas are present (Airport Beach, namely BAS, and Dziani Dzaha intracrateric lake). The large submarine eruption at the feet of Mayotte (50 km offshore; 3.5 km b.s.l.) is associated with deep (mantle level) seismic activity closer to the coast (5–15 km offshore) possibly corresponding to a single and large magmatic plumbing system. Our study aims at characterizing the chemical and isotopic composition of gas seeps on land and assesses their potential link with the magmatic plumbing system feeding the Mayotte volcanic ridge and the recent submarine activity. Data from bubbling gases collected between 2018 and 2021 are discussed and compared with older datasets acquired between 2005 and 2016 from different research teams. The relation between 3 He / 4 He and δ 13 C - CO 2 shows a clear magmatic origin for Mayotte bubbling gases, while the variable proportions and isotopic signature of CH 4 is related to the occurrence of both biogenic and abiogenic sources of methane. Our new dataset points to a time-decreasing influence of the recent seismo-volcanic activity at Mayotte on the composition of hydrothermal fluids on land, whose equilibrium temperature steadily decreases since 2018. The increased knowledge on the gas-geochemistry at Mayotte makes the results of this work of potential support for volcanic and environmental monitoring programs.
Journal Article
Novel hydrocarbon-utilizing soil mycobacteria synthesize unique mycocerosic acids at a Sicilian everlasting fire
by
Sinninghe Damsté, Jaap S.
,
Smit, Nadine T.
,
Witkowski, Caitlyn R.
in
Air pollution
,
Anthropogenic factors
,
Bacteria
2021
Soil bacteria rank among the most diverse groups of organisms on Earth and actively impact global processes of carbon cycling, especially in the emission of greenhouse gases like methane, CO2 and higher gaseous hydrocarbons. An abundant group of soil bacteria are the mycobacteria, which colonize various terrestrial, marine and anthropogenic environments due to their impermeable cell envelope that contains remarkable lipids. These bacteria have been found to be highly abundant at petroleum and gas seep areas, where they might utilize the released hydrocarbons. However, the function and the lipid biomarker inventory of these soil mycobacteria are poorly studied. Here, soils from the Fuoco di Censo seep, an everlasting fire (gas seep) in Sicily, Italy, were investigated for the presence of mycobacteria via 16S rRNA gene sequencing and fatty acid profiling. The soils contained high relative abundances (up to 34 % of reads assigned) of mycobacteria, phylogenetically close to the Mycobacterium simiae complex and more distant from the well-studied M. tuberculosis and hydrocarbon-utilizing M. paraffinicum. The soils showed decreasing abundances of mycocerosic acids (MAs), fatty acids unique for mycobacteria, with increasing distance from the seep. The major MAs at this seep were tentatively identified as 2,4,6,8-tetramethyl tetracosanoic acid and 2,4,6,8,10-pentamethyl hexacosanoic acid. Unusual MAs with mid-chain methyl branches at positions C-12 and C-16 (i.e., 2,12-dimethyl eicosanoic acid and 2,4,6,8,16-pentamethyl tetracosanoic acid) were also present. The molecular structures of the Fuoco di Censo MAs are different from those of the well-studied mycobacteria like M. tuberculosis or M. bovis and have relatively δ13C-depleted values (−38 ‰ to −48 ‰), suggesting a direct or indirect utilization of the released seep gases like methane or ethane. The structurally unique MAs in combination with their depleted δ13C values identified at the Fuoco di Censo seep offer a new tool to study the role of soil mycobacteria as hydrocarbon gas consumers in the carbon cycle.
Journal Article