Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
623
result(s) for
"Gray, William M."
Sort by:
A subset of plasma membrane-localized PP2C.D phosphatases negatively regulate SAUR-mediated cell expansion in Arabidopsis
2018
The plant hormone auxin regulates numerous growth and developmental processes throughout the plant life cycle. One major function of auxin in plant growth and development is the regulation of cell expansion. Our previous studies have shown that SMALL AUXIN UP RNA (SAUR) proteins promote auxin-induced cell expansion via an acid growth mechanism. These proteins inhibit the PP2C.D family phosphatases to activate plasma membrane (PM) H+-ATPases and thereby promote cell expansion. However, the functions of individual PP2C.D phosphatases are poorly understood. Here, we investigated PP2C.D-mediated control of cell expansion and other aspects of plant growth and development. The nine PP2C.D family members exhibit distinct subcellular localization patterns. Our genetic findings demonstrate that the three plasma membrane-localized members, PP2C.D2, PP2C.D5, and PP2C.D6, are the major regulators of cell expansion. These phosphatases physically interact with SAUR19 and PM H+-ATPases, and inhibit cell expansion by dephosphorylating the penultimate threonine of PM H+-ATPases. PP2C.D genes are broadly expressed and are crucial for diverse plant growth and developmental processes, including apical hook development, phototropism, and organ growth. GFP-SAUR19 overexpression suppresses the growth defects conferred by PP2C.D5 overexpression, indicating that SAUR proteins antagonize the growth inhibition conferred by the plasma membrane-localized PP2C.D phosphatases. Auxin and high temperature upregulate the expression of some PP2C.D family members, which may provide an additional layer of regulation to prevent plant overgrowth. Our findings provide novel insights into auxin-induced cell expansion, and provide crucial loss-of-function genetic support for SAUR-PP2C.D regulatory modules controlling key aspects of plant growth.
Journal Article
SAUR63 stimulates cell growth at the plasma membrane
by
University of Minnesota [Twin Cities] (UMN) ; University of Minnesota System (UMN)
,
Trinidad, Brendan
,
Jaillais, Yvon
in
Adenosine triphosphatase
,
Amino acids
,
Analysis
2022
In plants, regulated cell expansion determines organ size and shape. Several members of the family of redundantly acting Small Auxin Up RNA (SAUR) proteins can stimulate plasma membrane (PM) H + -ATPase proton pumping activity by inhibiting PM-associated PP2C.D phosphatases, thereby increasing the PM electrochemical potential, acidifying the apoplast, and stimulating cell expansion. Similarly, Arabidopsis thaliana SAUR63 was able to increase growth of various organs, antagonize PP2C.D5 phosphatase, and increase H + -ATPase activity. Using a gain-of-function approach to bypass genetic redundancy, we dissected structural requirements for SAUR63 growth-promoting activity. The divergent N-terminal domain of SAUR63 has a predicted basic amphipathic α-helix and was able to drive partial PM association. Deletion of the N-terminal domain decreased PM association of a SAUR63 fusion protein, as well as decreasing protein level and eliminating growth-promoting activity. Conversely, forced PM association restored ability to promote H + -ATPase activity and cell expansion, indicating that SAUR63 is active when PM-associated. Lipid binding assays and perturbations of PM lipid composition indicate that the N-terminal domain can interact with PM anionic lipids. Mutations in the conserved SAUR domain also reduced PM association in root cells. Thus, both the N-terminal domain and the SAUR domain may cooperatively mediate the SAUR63 PM association required to promote growth.
Journal Article
Mutation of a Conserved Motif of PP2C.D Phosphatases Confers SAUR Immunity and Constitutive Activity
2019
The phytohormone auxin promotes the growth of plant shoots by stimulating cell expansion via plasma membrane (PM) H⁺-ATPase activation, which facilitates cell wall loosening and solute uptake. Mechanistic insight was recently obtained by demonstrating that auxin-induced SMALL AUXIN UP RNA (SAUR) proteins inhibit D-CLADE TYPE 2C PROTEIN PHOSPHATASE (PP2C.D) activity, thereby trapping PM H⁺-ATPases in the phosphorylated, activated state, but how SAURs bind PP2C.D proteins and inhibit their activity is unknown. Here, we identified a highly conserved motif near the C-terminal region of the PP2C.D catalytic domain that is required for SAUR binding in Arabidopsis (Arabidopsis thaliana). Missense mutations in this motif abolished SAUR binding but had no apparent effect on catalytic activity. Consequently, mutant PP2C.D proteins that could not bind SAURs exhibited constitutive activity, as they were immune to SAUR inhibition. In planta expression of SAUR-immune pp2c.d2 or pp2c.d5 derivatives conferred severe cell expansion defects and corresponding constitutively low levels of PM H⁺-ATPase phosphorylation. These growth defects were not alleviated by either auxin treatment or 35S:StrepII-SAUR19 coexpression. In contrast, a PM H⁺-ATPase gain-of-function mutation that results in a constitutively active H1 pump partially suppressed SAUR-immune pp2c.d5 phenotypes, demonstrating that impaired PM H⁺-ATPase function is largely responsible for the reduced growth of the SAUR-immune pp2c.d5 mutant. Together, these findings provide crucial genetic support for SAUR-PP2C.D regulation of cell expansion via modulation of PM H⁺-ATPase activity. Furthermore, SAUR-immune pp2c.dderivatives provide new genetic tools for elucidating SAUR and PP2C.D functions and manipulating plant organ growth.
Journal Article
PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature
by
Spartz, Angela K
,
Yu, Peng
,
Lee, Sang Ho
in
Ambient temperature
,
Arabidopsis - genetics
,
Arabidopsis - metabolism
2011
At high ambient temperature, plants display dramatic stem elongation in an adaptive response to heat. This response is mediated by elevated levels of the phytohormone auxin and requires auxin biosynthesis, signaling, and transport pathways. The mechanisms by which higher temperature results in greater auxin accumulation are unknown, however. A basic helix-loop-helix transcription factor, PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), is also required for hypocotyl elongation in response to high temperature. PIF4 also acts redundantly with its homolog, PIF5, to regulate diurnal growth rhythms and elongation responses to the threat of vegetative shade. PIF4 activity is reportedly limited in part by binding to both the basic helix-loop-helix protein LONG HYPOCOTYL IN FAR RED 1 and the DELLA family of growth-repressing proteins. Despite the importance of PIF4 in integrating multiple environmental signals, the mechanisms by which PIF4 controls growth are unknown. Here we demonstrate that PIF4 regulates levels of auxin and the expression of key auxin biosynthesis genes at high temperature. We also identify a family of SMALL AUXIN UP RNA (SAUR) genes that are expressed at high temperature in a PIF4-dependent manner and promote elongation growth. Taken together, our results demonstrate direct molecular links among PIF4, auxin, and elongation growth at high temperature.
Journal Article
Constitutive Expression of Arabidopsis SMALL AUXIN UP RNA19 (SAUR19) in Tomato Confers Auxin-Independent Hypocotyl Elongation
by
Spartz, Angela K.
,
Olszewski, Neil E.
,
Wu, Guosheng
in
Arabidopsis Proteins - genetics
,
Arabidopsis Proteins - metabolism
,
Gene Expression Regulation, Plant
2017
The plant hormone indole-3-acetic acid (IAA or auxin) mediates the elongation growth of shoot tissues by promoting cell expansion. According to the acid growth theory proposed in the 1970s, auxin activates plasma membrane H⁺-ATPases (PM H⁺-ATPases) to facilitate cell expansion by both loosening the cell wall through acidification and promoting solute uptake. Mechanistically, however, this process is poorly understood. Recent findings in Arabidopsis (Arabidopsis thaliana) have demonstrated that auxin-induced SMALL AUXIN UP RNA (SAUR) genes promote elongation growth and play a key role in PM H⁺-ATPase activation by inhibiting PP2C.D family protein phosphatases. Here, we extend these findings by demonstrating that SAUR proteins also inhibit tomato PP2C.D family phosphatases and that AtSAUR19 overexpression in tomato (Solanum lycopersicum) confers the same suite of phenotypes as previously reported for Arabidopsis. Furthermore, we employ a custom image-based method for measuring hypocotyl segment elongation with high resolution and a method for measuring cell wall mechanical properties, to add mechanistic details to the emerging description of auxin-mediated cell expansion. We find that constitutive expression of GFP-AtSAUR19 bypasses the normal requirement of auxin for elongation growth by increasing the mechanical extensibility of excised hypocotyl segments. In contrast, hypocotyl segments overexpressing a PP2C.D phosphatase are specifically impaired in auxin-mediated elongation. The time courses of auxin-induced SAUR expression and auxindependent elongation growth were closely correlated. These findings indicate that induction of SAUR expression is sufficient to elicit auxin-mediated expansion growth by activating PM H⁺-ATPases to facilitate apoplast acidification and mechanical wall loosening.
Journal Article
BRASSINOSTEROID-SIGNALING KINASE 3, a plasma membrane-associated scaffold protein involved in early brassinosteroid signaling
by
Reproduction et développement des plantes (RDP) ; École normale supérieure de Lyon (ENS de Lyon) ; Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
,
Gray, William
,
Geng, Sa
in
Amino Acid Sequence - genetics
,
Arabidopsis - genetics
,
Arabidopsis - growth & development
2019
Brassinosteroids (BRs) are steroid hormones essential for plant growth and development. The BR signaling pathway has been studied in some detail, however, the functions of the BRASSINOSTEROID-SIGNALING KINASE (BSK) family proteins in the pathway have remained elusive. Through forward genetics, we identified five semi-dominant mutations in the BSK3 gene causing BSK3 loss-of-function and decreased BR responses. We therefore investigated the function of BSK3, a receptor-like cytoplasmic kinase, in BR signaling and plant growth and development. We find that BSK3 is anchored to the plasma membrane via N-myristoylation, which is required for its function in BR signaling. The N-terminal kinase domain is crucial for BSK3 function, and the C-terminal three tandem TPR motifs contribute to BSK3/BSK3 homodimer and BSK3/BSK1 heterodimer formation. Interestingly, the effects of BSK3 on BR responses are dose-dependent, depending on its protein levels. Our genetic studies indicate that kinase dead BSK3 K86R protein partially rescues the bsk3-1 mutant phenotypes. BSK3 directly interacts with the BSK family proteins (BSK3 and BSK1), BRI1 receptor kinase, BSU1 phosphatase, and BIN2 kinase. BIN2 phosphorylation of BSK3 enhances BSK3/BSK3 homodimer and BSK3/BSK1 heterodimer formation, BSK3/BRI1 interaction, and BSK3/BSU1 interaction. Furthermore, we find that BSK3 upregulates BSU1 transcript and protein levels to activate BR signaling. BSK3 is broadly expressed and plays an important role in BR-mediated root growth, shoot growth, and organ separation. Together, our findings suggest that BSK3 may function as a scaffold protein to regulate BR signaling. The results of our studies provide new insights into early BR signaling mechanisms.
Journal Article
Gain-of-Function Mutation in the Arabidopsis Pleiotropic Drug Resistance Transporter PDR9 Confers Resistance to Auxinic Herbicides
2006
Arabidopsis (Arabidopsis thaliana) contains 15 genes encoding members of the pleiotropic drug resistance (PDR) family of ATP-binding cassette transporters. These proteins have been speculated to be involved in the detoxification of xenobiotics, however, little experimental support of this hypothesis has been obtained to date. Here we report our characterization of the Arabidopsis PDR9 gene. We isolated a semidominant, gain-of-function mutant, designated pdr9-1, that exhibits increased tolerance to the auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Reciprocally, loss-of-function mutations in PDR9 confer 2,4-D hypersensitivity. This altered auxin sensitivity defect of pdr9 mutants is specific for 2,4-D and closely related compounds as these mutants respond normally to the endogenous auxins indole-3-acetic acid and indole-butyric acid. We demonstrate that 2,4-D, but not indole-3-acetic acid transport is affected by mutations in pdr9, suggesting that the PDR9 transporter specifically effluxes 2,4-D out of plant cells without affecting endogenous auxin transport. The semidominant pdr9-1 mutation affects an extremely highly conserved domain present in all known plant PDR transporters. The single amino acid change results in increased PDR9 abundance and provides a novel approach for elucidating the function of plant PDR proteins.
Journal Article
Multidecadal Variability in North Atlantic Tropical Cyclone Activity
2008
Recent increases in Atlantic basin tropical cyclone activity since 1995 and the associated destructive U.S. landfall events in 2004 and 2005 have generated considerable interest into why there has been such a sharp upturn. Natural variability, human-induced global warming, or a combination of both factors, have been suggested. Several previous studies have discussed observed multidecadal variability in the North Atlantic over 25–40-yr time scales. This study, using data from 1878 to the present, creates a metric based on far North Atlantic sea surface temperature anomalies and basinwide North Atlantic sea level pressure anomalies that shows remarkable agreement with observed multidecadal variability in both Atlantic basin tropical cyclone activity and in U.S. landfall frequency.
Journal Article
The Recent Increase in Atlantic Hurricane Activity: Causes and Implications
by
Goldenberg, Stanley B.
,
Mestas-Nuñez, Alberto M.
,
Gray, William M.
in
Atlantic Ocean
,
Climate change
,
Climate models
2001
The years 1995 to 2000 experienced the highest level of North Atlantic hurricane activity in the reliable record. Compared with the generally low activity of the previous 24 years (1971 to 1994), the past 6 years have seen a doubling of overall activity for the whole basin, a 2.5-fold increase in major hurricanes (≥50 meters per second), and a fivefold increase in hurricanes affecting the Caribbean. The greater activity results from simultaneous increases in North Atlantic sea-surface temperatures and decreases in vertical wind shear. Because these changes exhibit a multidecadal time scale, the present high level of hurricane activity is likely to persist for an additional ∼10 to 40 years. The shift in climate calls for a reevaluation of preparedness and mitigation strategies.
Journal Article
Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid
by
Strader, Lucia C
,
Murphy, Angus S
,
Yang, Haibing
in
Acetic acid
,
Arabidopsis
,
Arabidopsis - genetics
2010
Differential distribution of the plant hormone auxin within tissues mediates a variety of developmental processes. Cellular auxin levels are determined by metabolic processes including synthesis, degradation, and (de)conjugation, as well as by auxin transport across the plasma membrane. Whereas transport of free auxins such as naturally occurring indole-3-acetic acid (IAA) is well characterized, little is known about the transport of auxin precursors and metabolites. Here, we identify a mutation in the ABCG37 gene of Arabidopsis that causes the polar auxin transport inhibitor sensitive1 (pis1) phenotype manifested by hypersensitivity to auxinic compounds. ABCG37 encodes the pleiotropic drug resistance transporter that transports a range of synthetic auxinic compounds as well as the endogenous auxin precursor indole-3-butyric acid (IBA), but not free IAA. ABCG37 and its homolog ABCG36 act redundantly at outermost root plasma membranes and, unlike established IAA transporters from the PIN and ABCB families, transport IBA out of the cells. Our findings explore possible novel modes of regulating auxin homeostasis and plant development by means of directional transport of the auxin precursor IBA and presumably also other auxin metabolites.
Journal Article