Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
44 result(s) for "Greber, Boris"
Sort by:
Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations
Induced pluripotent stem cells (iPSCs) can self-renew indefinitely in culture and differentiate into all specialized cell types including gametes. iPSCs do not exist naturally and are instead generated (“induced” or “reprogrammed”) in culture from somatic cells through ectopic co-expression of defined pluripotency factors. Since they can be generated from any healthy person or patient, iPSCs are considered as a valuable resource for regenerative medicine to replace diseased or damaged tissues. In addition, reprogramming technology has provided a powerful tool to study mechanisms of cell fate decisions and to model human diseases, thereby substantially potentiating the possibility to (i) discover new drugs in screening formats and (ii) treat life-threatening diseases through cell therapy-based strategies. However, various legal and ethical barriers arise when aiming to exploit the full potential of iPSCs to minimize abuse or unauthorized utilization. In this review, we discuss bioethical, legal, and societal concerns associated with research and therapy using iPSCs. Furthermore, we present key questions and suggestions for stem cell scientists, legal authorities, and social activists investigating and working in this field.
Sequential factor delivery enables efficient workflow for universal gene editing in clinical grade iPS cells
Human induced pluripotent stem cells (iPSCs) are gaining momentum as a powerful starting material in cell therapy. To fully harness their potential, CRISPR technology permits endogenous gene modifications as well as the introduction of advanced features, to increase the immune compatibility of the cells or insert suicide genes for enhancing therapeutic safety, for instance. However, genetic manipulation of iPSCs, in particular the generation of knock-in lines, remains relatively inefficient. Conventional mitigation strategies, such as enriching for positive cells using antibiotic selection or complex instrumentation, may, however, cause conflicts with good manufacturing practice (GMP) requirements. To address this challenge, we have systematically optimized a basic gene editing procedure using both Cas9 and Cas12a-based ribonucleoprotein (RNP) complexes. Based on the sequential delivery of RNPs and donor plasmids as a critical hallmark, this virus-free approach permits knock-ins of full-length transgenes at above 30% efficiency, while readily identifying positive clones through random screening at small scale. We exemplify these advances by creating and characterizing homozygous iPSC lines depleted of HLA class I and carrying an inducible caspase-9 suicide gene. Isolated clones from independent GMP iPSC lines retained genomic integrity, differentiation capability, and functionality of the safety switch in the differentiated state. This improved methodology will form a flexible platform for custom gene editing universally applicable both in basic iPSC research and therapy.
Direct reprogramming of human neural stem cells by OCT4
Human iPS cells made simpler Earlier this year Hans Schöler's group reported that a single transcription factor, OCT4 , was sufficient to reprogram mouse adult neural stem cells to pluripotency, making them capable of producing virtually any cell type in the right conditions. This was a striking simplification of the process — OCT4 was just one of four factors used in the early (2006/7) and classic work on producing iPS (induced pluripotent stem) cells. Now Schöler and colleagues show that OCT4 alone can also generate iPS cells from human neural stem cells. Although induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by ectopic expression of four transcription factors, the expression of one of these four, Oct4 , is sufficient to directly reprogram adult mouse neural stem cells to iPS cells. The generation of one-factor human iPS cells from human fetal neural stem cells by ectopic expression of OCT4 alone is now reported, demonstrating that OCT4 is sufficient to reprogram human neural stem cells to pluripotency. Induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by ectopic expression of four transcription factors ( OCT4 (also called POU5F1 ), SOX2 , c-Myc and KLF4 ) 1 , 2 , 3 , 4 , 5 , 6 , 7 . We previously reported that Oct4 alone is sufficient to reprogram directly adult mouse neural stem cells to iPS cells 8 . Here we report the generation of one-factor human iPS cells from human fetal neural stem cells (one-factor (1F) human NiPS cells) by ectopic expression of OCT4 alone. One-factor human NiPS cells resemble human embryonic stem cells in global gene expression profiles, epigenetic status, as well as pluripotency in vitro and in vivo . These findings demonstrate that the transcription factor OCT4 is sufficient to reprogram human neural stem cells to pluripotency. One-factor iPS cell generation will advance the field further towards understanding reprogramming and generating patient-specific pluripotent stem cells.
Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: Disease mechanisms and pharmacological rescue
SignificanceThere are few laboratory models that recapitulate human cardiac disease. Here, we created human cell models for Jervell and Lange-Nielsen syndrome (JLNS) in vitro, based on human induced pluripotent stem cells (hiPSCs). JLNS is one of the most severe disorders of heart rhythm and can cause sudden death in young patients. JLNS is inherited recessively and is caused by homozygous mutations in the slow component of the delayed rectifier potassium current, IKs. Cardiomyocytes (CMs) from two independent sets of patient-derived and engineered hiPSCs showed electrophysiological defects that reflect the severity of the condition in patients. Our work allowed better understanding of the mechanisms of recessive inheritance. Furthermore, JLNS-CMs showed increased sensitivity to proarrhythmic drugs, which could be rescued pharmacologically, demonstrating the potential of hiPSC-CMs in drug testing. Jervell and Lange-Nielsen syndrome (JLNS) is one of the most severe life-threatening cardiac arrhythmias. Patients display delayed cardiac repolarization, associated high risk of sudden death due to ventricular tachycardia, and congenital bilateral deafness. In contrast to the autosomal dominant forms of long QT syndrome, JLNS is a recessive trait, resulting from homozygous (or compound heterozygous) mutations in KCNQ1 or KCNE1. These genes encode the α and β subunits, respectively, of the ion channel conducting the slow component of the delayed rectifier K+ current, IKs. We used complementary approaches, reprogramming patient cells and genetic engineering, to generate human induced pluripotent stem cell (hiPSC) models of JLNS, covering splice site (c.478-2A>T) and missense (c.1781G>A) mutations, the two major classes of JLNS-causing defects in KCNQ1. Electrophysiological comparison of hiPSC-derived cardiomyocytes (CMs) from homozygous JLNS, heterozygous, and wild-type lines recapitulated the typical and severe features of JLNS, including pronounced action and field potential prolongation and severe reduction or absence of IKs. We show that this phenotype had distinct underlying molecular mechanisms in the two sets of cell lines: the previously unidentified c.478-2A>T mutation was amorphic and gave rise to a strictly recessive phenotype in JLNS-CMs, whereas the missense c.1781G>A lesion caused a gene dosage-dependent channel reduction at the cell membrane. Moreover, adrenergic stimulation caused action potential prolongation specifically in JLNS-CMs. Furthermore, sensitivity to proarrhythmic drugs was strongly enhanced in JLNS-CMs but could be pharmacologically corrected. Our data provide mechanistic insight into distinct classes of JLNS-causing mutations and demonstrate the potential of hiPSC-CMs in drug evaluation.
Human iPS cell model of type 3 long QT syndrome recapitulates drug-based phenotype correction
Long QT syndrome is a potentially life-threatening disease characterized by delayed repolarization of cardiomyocytes, QT interval prolongation in the electrocardiogram, and a high risk for sudden cardiac death caused by ventricular arrhythmia. The genetic type 3 of this syndrome (LQT3) is caused by gain-of-function mutations in the SCN5A cardiac sodium channel gene which mediates the fast Na v 1.5 current during action potential initiation. Here, we report the analysis of LQT3 human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These were generated from a patient with a heterozygous p.R1644H mutation in SCN5A known to interfere with fast channel inactivation. LQT3 hiPSC-CMs recapitulated pathognomonic electrophysiological features of the disease, such as an accelerated recovery from inactivation of sodium currents as well as action potential prolongation, especially at low stimulation rates. In addition, unlike previously described LQT3 hiPSC models, we observed a high incidence of early after depolarizations (EADs) which is a trigger mechanism for arrhythmia in LQT3. Administration of specific sodium channel inhibitors was found to shorten action and field potential durations specifically in LQT3 hiPSC-CMs and antagonized EADs in a dose-dependent manner. These findings were in full agreement with the pharmacological response profile of the underlying patient and of other patients from the same family. Thus, our data demonstrate the utility of patient-specific LQT3 hiPSCs for assessing pharmacological responses to putative drugs and for improving treatment efficacies.
Cardiogenic programming of human pluripotent stem cells by dose-controlled activation of EOMES
Master cell fate determinants are thought to induce specific cell lineages in gastrulation by orchestrating entire gene programs. The T-box transcription factor EOMES (eomesodermin) is crucially required for the development of the heart—yet it is equally important for endoderm specification suggesting that it may act in a context-dependent manner. Here, we define an unrecognized interplay between EOMES and the WNT signaling pathway in controlling cardiac induction by using loss and gain-of-function approaches in human embryonic stem cells. Dose-dependent EOMES induction alone can fully replace a cocktail of signaling molecules otherwise essential for the specification of cardiogenic mesoderm. Highly efficient cardiomyocyte programming by EOMES mechanistically involves autocrine activation of canonical WNT signaling via the WNT3 ligand, which necessitates a shutdown of this axis at a subsequent stage. Our findings provide insights into human germ layer induction and bear biotechnological potential for the robust production of cardiomyocytes from engineered stem cells. The T-box transcription factor eomesodermin (EOMES) acts both in endoderm specification as well as heart development, suggesting context-specific function. Here, the authors show that dose-controlled EOMES induction is sufficient for cardiogenic programming of human pluripotent stem cells.
Small Molecule-Assisted, Line-Independent Maintenance of Human Pluripotent Stem Cells in Defined Conditions
Human pluripotent stem cells (hPSCs) are conventionally grown in a mouse feeder cell-dependent manner. Chemically defined culture conditions are, however, desirable not only for potential medically oriented applications but also for investigating mechanisms of self-renewal and differentiation. In light of the rather high complexity and cost of existing defined hPSC culture systems, we have systematically evaluated over 20 potential media ingredients. Only components that reproducibly gave beneficial effects were ultimately combined to yield a simple and cost-effective formulation termed FTDA. This xeno-free medium is based on mimicking self-renewal factor activities present in mouse embryonic fibroblast-conditioned medium, at minimal dosages. Additionally, small molecule inhibitors of BMP and WNT signaling served to specifically suppress typical types of spontaneous differentiation seen in hPSC cultures. FTDA medium was suitable for the generation of human induced pluripotent stem cells and enabled robust long-term maintenance of diverse hPSC lines including hard-to-grow ones. Comparisons with existing defined media suggested reduced spontaneous differentiation rates in FTDA. Our results imply that using supportive factors at minimal concentrations may still promote robust self-renewal and preserve pluripotency of hPSCs.
Revised roles of ISL1 in a hES cell-based model of human heart chamber specification
The transcription factor ISL1 is thought to be key for conveying the multipotent and proliferative properties of cardiac precursor cells. Here, we investigate its function upon cardiac induction of human embryonic stem cells. We find that ISL1 does not stabilize the transient cardiac precursor cell state but rather serves to accelerate cardiomyocyte differentiation. Conversely, ISL1 depletion delays cardiac differentiation and respecifies nascent cardiomyocytes from a ventricular to an atrial identity. Mechanistic analyses integrate this unrecognized anti-atrial function of ISL1 with known and newly identified atrial inducers. In this revised view, ISL1 is antagonized by retinoic acid signaling via a novel player, MEIS2. Conversely, ISL1 competes with the retinoic acid pathway for prospective cardiomyocyte fate, which converges on the atrial specifier NR2F1. This study reveals a core regulatory network putatively controlling human heart chamber formation and also bears implications for the subtype-specific production of human cardiomyocytes with enhanced functional properties.
Subtype-specific differentiation of cardiac pacemaker cell clusters from human induced pluripotent stem cells
Background Human induced pluripotent stem cells (hiPSC) harbor the potential to differentiate into diverse cardiac cell types. Previous experimental efforts were primarily directed at the generation of hiPSC-derived cells with ventricular cardiomyocyte characteristics. Aiming at a straightforward approach for pacemaker cell modeling and replacement, we sought to selectively differentiate cells with nodal-type properties. Methods hiPSC were differentiated into spontaneously beating clusters by co-culturing with visceral endoderm-like cells in a serum-free medium. Subsequent culturing in a specified fetal bovine serum (FBS)-enriched cell medium produced a pacemaker-type phenotype that was studied in detail using quantitative real-time polymerase chain reaction (qRT-PCR), immunocytochemistry, and patch-clamp electrophysiology. Further investigations comprised pharmacological stimulations and co-culturing with neonatal cardiomyocytes. Results hiPSC co-cultured in a serum-free medium with the visceral endoderm-like cell line END-2 produced spontaneously beating clusters after 10–12 days of culture. The pacemaker-specific genes HCN4 , TBX3 , and TBX18 were abundantly expressed at this early developmental stage, while levels of sarcomeric gene products remained low. We observed that working-type cardiomyogenic differentiation can be suppressed by transfer of early clusters into a FBS-enriched cell medium immediately after beating onset. After 6 weeks under these conditions, sinoatrial node (SAN) hallmark genes remained at high levels, while working-type myocardial transcripts ( NKX2.5 , TBX5 ) were low. Clusters were characterized by regular activity and robust beating rates (70–90 beats/min) and were triggered by spontaneous Ca 2+ transients recapitulating calcium clock properties of genuine pacemaker cells. They were responsive to adrenergic/cholinergic stimulation and able to pace neonatal rat ventricular myocytes in co-culture experiments. Action potential (AP) measurements of cells individualized from clusters exhibited nodal-type (63.4%) and atrial-type (36.6%) AP morphologies, while ventricular AP configurations were not observed. Conclusion We provide a novel culture media-based, transgene-free approach for targeted generation of hiPSC-derived pacemaker-type cells that grow in clusters and offer the potential for disease modeling, drug testing, and individualized cell-based replacement therapy of the SAN.
The first versatile human iPSC-based model of ectopic virus induction allows new insights in RNA-virus disease
A detailed description of pathophysiological effects that viruses exert on their host is still challenging. For the first time, we report a highly controllable viral expression model based on an iPS-cell line from a healthy human donor. The established viral model system enables a dose-dependent and highly localized RNA-virus expression in a fully controllable environment, giving rise for new applications for the scientific community.