Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
62 result(s) for "Greco, Donatella"
Sort by:
Strengthening the Role of PSMC5 as a Potential Gene Associated with Neurodevelopmental Disorders
The 26S proteasome is a large, ATP-dependent proteolytic complex responsible for degrading ubiquitinated proteins in eukaryotic cells. It plays a crucial role in maintaining cellular protein homeostasis by selectively eliminating misfolded, damaged, or regulatory proteins marked for degradation. In this study, whole-exome sequencing (WES) was performed on an individual presenting with developmental delay and mild intellectual disability, as well as on both of his unaffected parents. This analysis identified a de novo variant, c.959C>G (p.Pro320Arg), in the PSMC5 gene. As predicted, this gene shows a very likely autosomal dominant inheritance pattern. Notably, PSMC5 has not previously been associated with any phenotype in the OMIM database. This variant was recently submitted to the ClinVar database as a variant of uncertain significance (VUS) and remains absent in both gnomAD and dbSNP. Notably, it has been identified in six unrelated individuals presenting with clinical features comparable to those observed in the patient described in this study. Multiple in silico prediction tools classified the variant as pathogenic, and a PhyloP conservation score supports strong evolutionary conservation of the mutated nucleotide. Protein structure predictions using the AlphaFold3 algorithm revealed notable structural differences between the mutant and wild-type PSMC5 proteins. We hypothesize that the p.Pro320Arg substitution alters the structure and function of PSMC5 as a regulatory subunit of the 26S proteasome, potentially impairing the stability and activity of the entire complex. Although functional studies are imperative, this study contributes to a deeper understanding of PSMC5, expands the spectrum of associated neurodevelopmental phenotypes, and highlights its potential as a therapeutic target. Furthermore, this study resulted in the submission of the identified variant to the ClinVar database (SCV006083352), where it was classified as pathogenic.
Clinical Application of a Customized Gene Panel for Identifying Autism Spectrum Disorder-Associated Variants
Background and Objectives: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that belong to genetic and epigenetic mechanism. Despite the recent advantages in next-generation sequencing (NGS) technology, ASD etiology is still unclear. Materials and Methods: In this study, we tested a customized target genetic panel consisting of 74 genes in a cohort of 53 ASD individuals. The tested panel was designed from the SFARI database. Results: Among 53 patients analyzed using a targeted genetic panel, 102 rare variants were identified, with nine individuals carrying likely pathogenic or pathogenic variants considered genetically “positive.” We identified six de novo variants across five genes (POGZ 2 variants, NCOR1, CHD2, ADNP, and GRIN2B), including two variants of uncertain significance in POGZ p.Thr451Met and NCOR1 p.Glu1137Lys, one likely pathogenic variant in GRIN2B p.Leu714Gln, and three pathogenic variants in POGZ p.Leu775Valfs32, CHD2 p.Thr1108Metfs8, and ADNP p.Pro5Argfs*2. Conclusions: This study presents a comprehensive characterization of the targeted gene panel used for genetic analysis, while critically evaluating its diagnostic limitations within the context of contemporary genomic approaches. A pivotal accomplishment of this study was the ClinVar submission of novel de novo variants which expands the documented mutational spectrum of ASD-associated genes and enhances future diagnostic interpretation.
Potential Association of the CSMD1 Gene with Moderate Intellectual Disability, Anxiety Disorder, and Obsessive–Compulsive Personality Traits
CSMD1 is a gene involved in various biological processes and is highly expressed in the central nervous system, where it plays a key role in complement activity, brain circuit development, and cognitive function. It has been implicated as a susceptibility gene for schizophrenia and a causative factor in developmental epileptic encephalopathy, neurodevelopmental disorders, and intellectual disability. However, no MIM phenotype number has been assigned to CSMD1 for a specific disorder. Here, we report an individual presenting with moderate intellectual disability, anxiety disorder, obsessive–compulsive personality traits, and facial dysmorphisms. Trio-based whole-exome sequencing (WES) identified two heterozygous CSMD1 variants, c.8095A>G and c.5315T>C, both classified as variants of uncertain significance (VUS) according to ACMG criteria. Computational analysis using the DOMINO tool supported an autosomal recessive inheritance model for CSMD1. This study contributes to the growing evidence linking CSMD1 to neurodevelopmental phenotypes, highlighting the need for further investigations to clarify its pathogenic role.
Caring and living with Prader-Willi syndrome in Italy: integrating children, adults and parents’ experiences through a multicentre narrative medicine research
ObjectivesPrader-Willi syndrome (PWS) significantly impacts health-related quality of life; however, its relational and existential aspects remain unknown in Italian clinical and social debate. The project aimed to investigate the impact of PWS on illness experience through narrative medicine (NM) to understand the daily life, needs and resources of patients with PWS and their caregivers, and to furnish insights for clinical practice.Design and settingThe project involved 10 medical centres of the Italian Network for Rare Diseases and PWS family associations and targeted underage and adult patients with PWS and their caregivers. Written interviews, composed by a sociodemographic survey and a narrative, were collected through the project’s website. Three dedicated illness plots employed evocative and open words to facilitate individual expression and to encourage reflection. Narratives were analysed through NVivo software. Researchers discussed the results with the project’s steering committee.ParticipantsTwenty-one children and adolescents and 34 adults with PWS joined the project, as well as 138 caregivers. A PWS diagnosis or the caregiving of a patient with PWS older than 5 years represented the eligibility criteria, as well as the willingness to share their illness experience by writing and the ability to communicate in Italian.ResultsThe analysis of narratives led to understanding the PWS social and relational issues concerning diagnosis and current management, PWS daily experiences and social contexts, PWS implications in the working sphere and participants’ future perspectives. Narratives demonstrated that PWS management affects relationships and work-life balance and that social stigma remains present.ConclusionThe project represented the first effort to investigate the impact of PWS on illness experience in Italy through NM while considering the perspectives of patients with PWS and their caregivers. The findings indicated that a multiprofessional approach is fundamental to ensure adequate treatment and provided elements for its improvement.
The Italian registry for patients with Prader–Willi syndrome
Background Prader–Willi syndrome (PWS) is a rare and complex genetic disease, with numerous implications on metabolic, endocrine, neuropsychomotor systems, and with behavioural and intellectual disorders. Rare disease patient registries are important scientific tools (1) to collect clinical and epidemiologic data, (2) to assess the clinical management including the diagnostic delay, (3) to improve patients’ care and (4) to foster research to identify new therapeutic solutions. The European Union has recommended the implementation and use of registries and databases. The main aims of this paper are to describe the process of setting up the Italian PWS register, and to illustrate our preliminary results. Materials and methods The Italian PWS registry was established in 2019 with the aims (1) to describe the natural history of the disease, (2) to determine clinical effectiveness of health care services, (3) to measure and monitor quality of care of patients. Information from six different variables are included and collected into this registry: demographics, diagnosis and genetics, patient status, therapy, quality of life and mortality. Results A total of 165 patients (50.3% female vs 49.7% male) were included into Italian PWS registry in 2019–2020 period. Average age at genetic diagnosis was 4.6 years; 45.4% of patients was less than 17 years old aged, while the 54.6% was in adult age (> 18 years old). Sixty-one percent of subjects had interstitial deletion of the proximal long arm of paternal chromosome 15, while 36.4% had uniparental maternal disomy for chromosome 15. Three patients presented an imprinting centre defect and one had a de novo translocation involving chromosome 15. A positive methylation test was demonstrated in the remaining 11 individuals but the underlying genetic defect was not identified. Compulsive food-seeking and hyperphagia was present in 63.6% of patients (prevalently in adults); 54.5% of patients developed morbid obesity. Altered glucose metabolism was present in 33.3% of patients. Central hypothyroidism was reported in 20% of patients; 94.7% of children and adolescents and 13.3% of adult patients is undergoing GH treatment. Conclusions The analyses of these six variables allowed to highlight important clinical aspects and natural history of PWS useful to inform future actions to be taken by national health care services and health professionals.
Specific Learning Disorders: Variation Analysis of 15 Candidate Genes in 9 Multiplex Families
Background and Objectives: Specific Learning Disorder (SLD) is a complex neurobiological disorder characterized by a persistent difficult in reading (dyslexia), written expression (dysgraphia), and mathematics (dyscalculia). The hereditary and genetic component is one of the underlying causes of SLD, but the relationship between genes and the environment should be considered. Several genetic studies were performed in different populations to identify causative genes. Materials and Methods: Here, we show the analysis of 9 multiplex families with at least 2 individuals diagnosed with SLD per family, with a total of 37 persons, 21 of whom are young subjects with SLD, by means of Next-Generation Sequencing (NGS) to identify possible causative mutations in a panel of 15 candidate genes: CCPG1, CYP19A1, DCDC2, DGKI, DIP2A, DYM, GCFC2, KIAA0319, MC5R, MRPL19, NEDD4L, PCNT, PRMT2, ROBO1, and S100B. Results: We detected, in eight families out nine, SNP variants in the DGKI, DIP2A, KIAA0319, and PCNT genes, even if in silico analysis did not show any causative effect on this behavioral condition. In all cases, the mutation was transmitted by one of the two parents, thus excluding the case of de novo mutation. Moreover, the parent carrying the allelic variant transmitted to the children, in six out of seven families, reports language difficulties. Conclusions: Although the present results cannot be considered conclusive due to the limited sample size, the identification of genetic variants in the above genes can provide input for further research on the same, as well as on other genes/mutations, to better understand the genetic basis of this disorder, and from this perspective, to better understand also the neuropsychological and social aspects connected to this disorder, which affects an increasing number of young people.
Transcriptome Study in Sicilian Patients with Autism Spectrum Disorder
ASD is a complex condition primarily rooted in genetics, although influenced by environmental, prenatal, and perinatal risk factors, ultimately leading to genetic and epigenetic alterations. These mechanisms may manifest as inflammatory, oxidative stress, hypoxic, or ischemic damage. To elucidate potential variances in gene expression in ASD, a transcriptome analysis of peripheral blood mononuclear cells was conducted via RNA-seq on 12 ASD patients and 13 healthy controls, all of Sicilian ancestry to minimize environmental confounds. A total of 733 different statistically significant genes were identified between the two cohorts. Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) terms were employed to explore the pathways influenced by differentially expressed mRNAs. GSEA revealed GO pathways strongly associated with ASD, namely the GO Biological Process term “Response to Oxygen-Containing Compound”. Additionally, the GO Cellular Component pathway “Mitochondrion” stood out among other pathways, with differentially expressed genes predominantly affiliated with this specific pathway, implicating the involvement of different mitochondrial functions in ASD. Among the differentially expressed genes, FPR2 was particularly highlighted, belonging to three GO pathways. FPR2 can modulate pro-inflammatory responses, with its intracellular cascades triggering the activation of several kinases, thus suggesting its potential utility as a biomarker of pro-inflammatory processes in ASD.
Prader–Willi Syndrome with Angelman Syndrome in the Offspring
We report the second case, to the best of our knowledge, of a mother with Prader–Willi syndrome (PWS) who gave birth to a daughter with Angelman syndrome (AS). The menarche occurred when she was 16, and the following menstrual cycles were irregular, but she never took sexual hormone replacement therapy. At the age of 26, our patient with PWS became pregnant. The diagnosis was confirmed by molecular genetic testing that revealed a ~5.7 Mb deletion in the 15q11.1–15q13 region on the paternal allele in the mother with PWS and the maternal one in the daughter with AS, respectively. Both the mother with PWS and the daughter with AS showed peculiar clinical and genetic features of the two syndromes. Our case report reaffirms the possible fertility in PWS; therefore, it is very important to develop appropriate socio-sexual education programs and fertility assessments in order to guarantee the expression of a healthy sexuality.
Exome sequencing in a child with neurodevelopmental disorder and epilepsy: Variant analysis of the AHNAK2 gene
Background The AHNAK2 gene encodes a large nucleoprotein expressed in several tissues, including brain, squamous epithelia, smooth muscle, and neuropil. Its role in calcium signaling has been suggested and to date, clear evidence about its involvement in the pathogenesis of clinical disorders is still lacking. Methods Here, we report a female 24‐year‐old patient diagnosed with a cardio‐facio‐cutaneous‐like phenotype (CFC‐like), characterized by epilepsy, psychomotor development delay, atopic dermatitis, congenital heart disease, hypotonia, and facial dysmorphism, who is compound heterozygote for two missense mutations in the AHNAK2 gene detected by exome sequencing. Results This patient had no detectable variant in any of the genes known to be associated with the cardio‐facio‐cutaneous syndrome. Moreover, the mode of inheritance does not appear to be autosomal dominant, as it is in typical CFC syndrome. We have performed in silico assessment of mutation severity separately for each missense mutation, but this analysis excludes a severe effect on protein function. Protein structure predictions indicate the mutations are located in flexible regions possibly involved in molecular interactions. Conclusion We discuss an alternative interpretation on the potential involvement of the two missense mutations in the AHNAK2 gene on the expression of CFC‐like phenotype in this patient based on inter‐allelic complementation. The AHNAK2 gene encodes a large nucleoprotein expressed in several tissues, including brain, squamous epithelia, smooth muscle and neuropil. Here, we report a female patient diagnosed with a cardio‐facio‐cutaneous‐like phenotype (CFC‐like), characterized by epilepsy, psychomotor development delay, atopic dermatitis, congenital heart disease, hypotonia, and facial dysmorphism, who is compound heterozygote for two mis‐sense mutations in the AHNAK2 gene detected by exome sequencing.
Unveiling Secondary Mutations in Blended Phenotypes: Dual ERCC4 and OTOA Pathogenic Variants Through WES Analysis
This study describes two siblings from consanguineous parents who exhibit intellectual disability, microcephaly, photosensitivity, bilateral sensorineural hearing loss, numerous freckles, and other clinical features that suggest a potential disruption of the nucleotide excision repair (NER) pathway. Whole exome sequencing (WES) identified a novel homozygous missense variant in the ERCC4 gene, which was predicted to be pathogenic. However, a subsequent peculiar audiometric finding prompted further investigation, revealing a homozygous deletion in the OTOA gene linked to neurosensorial hearing loss. Both variants were located within a run of homozygosity (ROH) on chromosome 16p13.12-p12.2, implicating a complex genetic basis for the observed phenotype. While this study reports a potentially novel ERCC4 variant, it underscores the importance of comprehensive analysis and deep phenotyping in WES data to improve diagnostic accuracy. Our findings advocate for an expanded approach in WES analysis, ensuring more precise diagnoses and improved genetic counseling, particularly when specialized tests for structural variant analysis are unavailable.