Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
72
result(s) for
"Greenlee, Justin"
Sort by:
Scrapie versus Chronic Wasting Disease in White-Tailed Deer
by
Cassmann, Eric D.
,
Greenlee, M. Heather West
,
Bian, Jifeng
in
Amino acids
,
Animal diseases
,
Animals
2024
White-tailed deer are susceptible to scrapie (WTD scrapie) after oronasal inoculation with the classical scrapie agent from sheep. Deer affected by WTD scrapie are difficult to differentiate from deer infected with chronic wasting disease (CWD). To assess the transmissibility of the WTD scrapie agent and tissue phenotypes when further passaged in white-tailed deer, we oronasally inoculated wild-type white-tailed deer with WTD scrapie agent. We found that WTD scrapie and CWD agents were generally similar, although some differences were noted. The greatest differences were seen in bioassays of cervidized mice that exhibited significantly longer survival periods when inoculated with WTD scrapie agent than those inoculated with CWD agent. Our findings establish that white-tailed deer are susceptible to WTD scrapie and that the presence of WTD scrapie agent in the lymphoreticular system suggests the handling of suspected cases should be consistent with current CWD guidelines because environmental shedding may occur.
Journal Article
Disease phenotype of classical sheep scrapie is changed upon experimental passage through white-tailed deer
by
Bian, Jifeng
,
Moore, S. Jo
,
Greenlee, Justin J.
in
Analysis
,
Animal prion diseases
,
BASIC BIOLOGICAL SCIENCES
2023
Prion agents occur in strains that are encoded by the structure of the misfolded prion protein (PrP Sc ). Prion strains can influence disease phenotype and the potential for interspecies transmission. Little is known about the potential transmission of prions between sheep and deer. Previously, the classical US scrapie isolate (No.13-7) had a 100% attack rate in white-tailed deer after oronasal challenge. The purpose of this study was to test the susceptibility of sheep to challenge with the scrapie agent after passage through white-tailed deer (WTD scrapie). Lambs of various prion protein genotypes were oronasally challenged with WTD scrapie. Sheep were euthanized and necropsied upon development of clinical signs or at the end of the experiment (72 months post-inoculation). Enzyme immunoassay, western blot, and immunohistochemistry demonstrated PrP Sc in 4 of 10 sheep with the fastest incubation occurring in VRQ/VRQ sheep, which contrasts the original No.13-7 inoculum with a faster incubation in ARQ/ARQ sheep. Shorter incubation periods in VRQ/VRQ sheep than ARQ/ARQ sheep after passage through deer was suggestive of a phenotype change, so comparisons were made in ovinized mice and with sheep with known strains of classical sheep scrapie: No. 13–7 and x-124 (that has a more rapid incubation in VRQ/VRQ sheep). After mouse bioassay, the WTD scrapie and x-124 isolates have similar incubation periods and PrP Sc conformational stability that are markedly different than the original No. 13–7 inoculum. Furthermore, brain tissues of sheep with WTD scrapie and x-124 scrapie have similar patterns of immunoreactivity that are distinct from sheep with No. 13–7 scrapie. Multiple lines of evidence suggest a phenotype switch when No. 13–7 scrapie prions are passaged through deer. This represents one example of interspecies transmission of prions resulting in the emergence or selection of new strain properties that could confound disease eradication and control efforts.
Journal Article
Autoclave treatment of the classical scrapie agent US No. 13-7 and experimental inoculation to susceptible VRQ/ARQ sheep via the oral route results in decreased transmission efficiency
by
Cassmann, Eric D.
,
Mammadova, Najiba
,
Greenlee, Justin J.
in
Administration, Oral
,
Agricultural research
,
Analysis
2020
Scrapie, a prion disease of sheep, is highly resistant to conventional deactivation. Numerous methods to deactivate scrapie have been tested in laboratory animal models, and adequate autoclave treatment can reduce or remove the infectivity of some classical scrapie strains depending on the heating parameters used. In this study, we autoclaved brain homogenate from a sheep with US scrapie strain 13–7 for 30 minutes at 121°C. Genetically susceptible VRQ/ARQ sheep were orally inoculated with 3 grams of the autoclaved brain homogenate. For comparison, a second group of sheep was inoculated with a non-autoclaved brain homogenate. Rectal biopsies were used to assess antemortem scrapie disease progression throughout the study. Five out of ten (5/10) sheep that received autoclaved inoculum ultimately developed scrapie after an experimental endpoint of 72 months. These sheep had a mean incubation period of 26.99 months. Two out of five (2/5) positive sheep had detectable PrP Sc in antemortem rectal biopsies, and two (2/5) other sheep had PrP Sc in postmortem rectal tissue. A single sheep (1/5) was positive for scrapie in the CNS, small intestine, and retropharyngeal lymph node but had negative rectal tissue. All of the sheep (10/10) that received non-autoclaved inoculum developed scrapie with a mean incubation period of 20.2 months and had positive rectal biopsies at the earliest timepoint (14.7 months post-inoculation). These results demonstrate that sheep are orally susceptible to US derived classical scrapie strain 13–7 after autoclave treatment at 121°C for 30 minutes. Differences in incubation periods and time interval to first positive rectal biopsies indicate a partial reduction in infectivity titers for the autoclaved inoculum group.
Journal Article
Role of donor genotype in RT-QuIC seeding activity of chronic wasting disease prions using human and bank vole substrates
by
Hwang, Soyoun
,
Nicholson, Eric M.
,
Greenlee, Justin J.
in
Agricultural research
,
Amino acids
,
Animal diseases
2020
Chronic wasting disease is a transmissible spongiform encephalopathy of cervids. This fatal neurodegenerative disease is caused by misfolding of the cellular prion protein (PrPC) to pathogenic conformers (PrPSc), and the pathogenic forms accumulate in the brain and other tissues. Real-time Quaking Induced Conversion (RT-QuIC) can be used for the detection of prions and for prion strain discrimination in a variety of biological tissues from humans and animals. In this study, we evaluated how either PrPSc from cervids of different genotypes or PrPSc from different sources of CWD influence the fibril formation of recombinant bank vole (BV) or human prion proteins using RT-QuIC. We found that reaction mixtures seeded with PrPSc from different genotypes of white-tailed deer or reindeer brains have similar conversion efficiency with both substrates. Also, we observed similar results when assays were seeded with different sources of CWD. Thus, we conclude that the genotypes of all sources of CWD used in this study do not influence the level of conversion of PrPC to PrPSc.
Journal Article
Use of bovine recombinant prion protein and real-time quaking-induced conversion to detect cattle transmissible mink encephalopathy prions and discriminate classical and atypical L- and H-Type bovine spongiform encephalopathy
2017
Prions are amyloid-forming proteins that cause transmissible spongiform encephalopathies through a process involving conversion from the normal cellular prion protein to the pathogenic misfolded conformation (PrPSc). This conversion has been used for in vitro assays including serial protein misfolding amplification and real-time quaking induced conversion (RT-QuIC). RT-QuIC can be used for the detection of prions in a variety of biological tissues from humans and animals. Extensive work has been done to demonstrate that RT-QuIC is a rapid, specific, and highly sensitive prion detection assay. RT-QuIC uses recombinant prion protein to detect minute amounts of PrPSc. RT-QuIC has been successfully used to detect PrPSc from different prion diseases with a variety of substrates including hamster, human, sheep, bank vole, bovine and chimeric forms of prion protein. However, recombinant bovine prion protein has not been used to detect transmissible mink encephalopathy (TME) or to differentiate types of bovine spongiform encephalopathy (BSE) in samples from cattle. We evaluated whether PrPSc from TME and BSE infected cattle can be detected with RT-QuIC using recombinant bovine prion proteins, and optimized the reaction conditions to specifically detect cattle TME and to discriminate between classical and atypical BSE by conversion efficiency. We also found that substrate composed of the disease associated E211K mutant protein can be effective for the detection of TME in cattle and that wild type prion protein appears to be a practical substrate to discriminate between the different types of BSEs.
Journal Article
Transmission of the atypical/Nor98 scrapie agent to Suffolk sheep with VRQ/ARQ, ARQ/ARQ, and ARQ/ARR genotypes
by
Cassmann, Eric D.
,
Mammadova, Najiba
,
Moore, S. Jo
in
Agricultural research
,
Agriculture
,
Animal diseases
2021
Scrapie is a transmissible spongiform encephalopathy that occurs in sheep. Atypical/Nor98 scrapie occurs in sheep that tend to be resistant to classical scrapie and it is thought to occur spontaneously. The purpose of this study was to test the transmission of the Atypical/Nor98 scrapie agent in three genotypes of Suffolk sheep and characterize the distribution of misfolded prion protein (PrP Sc ). Ten sheep were intracranially inoculated with brain homogenate from a sheep with Atypical/Nor98 scrapie. All sheep with the ARQ/ARQ and ARQ/ARR genotypes developed Atypical/Nor98 scrapie confirmed by immunohistochemistry, and one sheep with the VRQ/ARQ genotype had detectable PrP Sc consistent with Atypical/Nor98 scrapie at the experimental endpoint of 8 years. Sheep with mild early accumulations of PrP Sc in the cerebellum had concomitant retinal PrP Sc . Accordingly, large amounts of retinal PrP Sc were identified in clinically affected sheep and sheep with dense accumulations of PrP Sc in the cerebellum.
Journal Article
Experimental Oronasal Transmission of Chronic Wasting Disease Agent from White-Tailed Deer to Suffolk Sheep
by
Cassmann, Eric D.
,
Moore, S. Jo
,
Greenlee, Justin J.
in
Agricultural research
,
animal diseases
,
Animal experimentation
2021
Chronic wasting disease (CWD) is a fatal prion disease of cervids. We examined host range of CWD by oronasally inoculating Suffolk sheep with brain homogenate from a CWD-positive white-tailed deer. Sixty months after inoculation, 1/7 sheep had immunoreactivity against the misfolded form of prion protein in lymphoid tissue. Results were confirmed by mouse bioassay.
Journal Article
Aqueous extraction of formalin-fixed paraffin-embedded tissue and detection of prion disease using real-time quaking-induced conversion
by
Nicholson, Eric M.
,
Hwang, Soyoun
,
Greenlee, Justin J.
in
Advancing Methods in Molecular Biology and Genetics
,
Animal diseases
,
Animals
2024
Objective
The goal of the research presented here is to determine if methods previously developed for the aqueous extraction of PrP
Sc
from formalin-fixed paraffin-embedded tissue (FFPET) are applicable to the detection PrP
Sc
by real-time quaking induced conversion (RT-QuIC). Previous work has utilized aqueous extraction of FFPET for detection of transmissible spongiform encephalopathies (TSEs) utilizing western blot and ELISA. This research extends the range of suitable methods for detection of TSEs in FFPET to RT-QuIC, which is arguably the most sensitive method to detect TSEs.
Results
We found complete agreement between the TSE status and the results from RT-QuIC seeded with the aqueous extract of FFPET samples. The method affords the diagnostic assessment TSE status by RT-QuIC of FFPET without the use of organic solvents that would otherwise create a mixed chemical-biological waste for disposal.
Journal Article
Source genotype influence on cross species transmission of transmissible spongiform encephalopathies evaluated by RT-QuIC
by
Hwang, Soyoun
,
Nicholson, Eric M.
,
Vance, Natalie M.
in
Agriculture
,
Animal diseases
,
Animal models
2018
Scrapie is a naturally occurring transmissible spongiform encephalopathy of sheep and goats. This fatal neurodegenerative disease is caused by misfolding of the cellular prion protein to pathogenic β-rich conformers (PrPSc) that accumulate in higher order structures of the brain and other tissues. This conversion has been used for in vitro assays including serial protein misfolding amplification and real-time quaking induced conversion (RT-QuIC). RT-QuIC can be used for the detection of prions and for strain discrimination in a variety of biological tissues from humans and animals. In this study, we evaluated how PrPSc isolated from sheep of different genotypes after inoculation with the scrapie agent influence the fibril formation in vitro using RT-QuIC. We found that reaction mixtures seeded with PrPSc from genotype VRQ/VRQ sheep brains have better conversion efficiency with 132M elk substrate compared to reactions seeded with PrPSc from the brains of sheep with the ARQ/ARQ genotype no matter which strain of scrapie was used to seed the reactions. We also inoculated transgenic mice expressing 132M elk PRNP (Tg12) with the scrapie agent from different genotypes of sheep to compare with our RT-QuIC results. The bioassays support the data showing a significantly shorter incubation period for inoculum from VRQ/VRQ sheep when compared to inoculum from ARQ/ARQ sheep. Thus, we conclude that the genotype of both source and recipient can strongly influence transmission.
Journal Article
Differential Accumulation of Misfolded Prion Strains in Natural Hosts of Prion Diseases
by
Cassmann, Eric D.
,
Lambert, Zoe J.
,
Greenlee, Justin J.
in
Animals
,
BASIC BIOLOGICAL SCIENCES
,
biomarkers
2021
Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of neurodegenerative protein misfolding diseases that invariably cause death. TSEs occur when the endogenous cellular prion protein (PrPC) misfolds to form the pathological prion protein (PrPSc), which templates further conversion of PrPC to PrPSc, accumulates, and initiates a cascade of pathologic processes in cells and tissues. Different strains of prion disease within a species are thought to arise from the differential misfolding of the prion protein and have different clinical phenotypes. Different strains of prion disease may also result in differential accumulation of PrPSc in brain regions and tissues of natural hosts. Here, we review differential accumulation that occurs in the retinal ganglion cells, cerebellar cortex and white matter, and plexuses of the enteric nervous system in cattle with bovine spongiform encephalopathy, sheep and goats with scrapie, cervids with chronic wasting disease, and humans with prion diseases. By characterizing TSEs in their natural host, we can better understand the pathogenesis of different prion strains. This information is valuable in the pursuit of evaluating and discovering potential biomarkers and therapeutics for prion diseases.
Journal Article