Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
55 result(s) for "Grever, Michael R."
Sort by:
Curcumin Down-Regulates DNA Methyltransferase 1 and Plays an Anti-Leukemic Role in Acute Myeloid Leukemia
Bioactive components from dietary supplements such as curcumin may represent attractive agents for cancer prevention or treatment. DNA methylation plays a critical role in acute myeloid leukemia (AML) development, and presents an excellent target for treatment of this disease. However, it remains largely unknown how curcumin, a component of the popular Indian spice turmeric, plays a role in DNA hypomethylation to reactivate silenced tumor suppressor genes and to present a potential treatment option for AML. Here we show that curcumin down-regulates DNMT1 expression in AML cell lines, both in vitro and in vivo, and in primary AML cells ex vivo. Mechanistically, curcumin reduced the expression of positive regulators of DNMT1, p65 and Sp1, which correlated with a reduction in binding of these transcription factors to the DNMT1 promoter in AML cell lines. This curcumin-mediated down-regulation of DNMT1 expression was concomitant with p15(INK4B) tumor suppressor gene reactivation, hypomethylation of the p15(INK4B) promoter, G1 cell cycle arrest, and induction of tumor cell apoptosis in vitro. In mice implanted with the human AML MV4-11 cell line, administration of curcumin resulted in remarkable suppression of AML tumor growth. Collectively, our data indicate that curcumin shows promise as a potential treatment for AML, and our findings provide a basis for future studies to test the clinical efficacy of curcumin - whether used as a single agent or as an adjuvant - for AML treatment.
Second cancer incidence in CLL patients receiving BTK inhibitors
Chronic lymphocytic leukemia (CLL) is associated with perturbed immune function and increased risk for second primary malignancies (SPM). Ibrutinib and acalabrutinib (BTKi) are effective therapies for CLL resulting in partial restoration of immune function. The incidence of and risk factors for SPM in CLL patients receiving BTKi are not yet characterized. We retrospectively determined the incidence of SPM in CLL patients treated with ibrutinib or acalabrutinib at our institution between 2009 and 2017, assessed for association between baseline characteristics and SPM incidence, and compared the observed to expected cancer incidence among age, sex, and year matched controls without CLL. After a median of 44 months follow-up, 64/691 patients (9%) were diagnosed with SPM (excluding non-melanoma skin cancer [NMSC]). The 3-year cumulative incidence rate was 16% for NMSC and 7% for other SPM. On multivariable analysis, smoking was associated with increased SPM risk (HR 2.8 [95% CI: 1.6–4.8]) and higher baseline CD8 count was associated with lower SPM risk (HR 0.9 for 2-fold increase [95% CI: 0.8–0.9]). The observed over expected rate of SPM was 2.2 [95% CI: 1.7–2.9]. CLL patients treated with BTKi remain at increased risk for SPM, and secondary cancer detection is an important consideration in this population.
Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine
A phase II clinical trial with single-agent decitabine was conducted in older patients (≥60 years) with previously untreated acute myeloid leukemia (AML) who were not candidates for or who refused intensive chemotherapy. Subjects received low-dose decitabine at 20 mg/m² i.v. over 1 h on days 1 to 10. Fifty-three subjects enrolled with a median age of 74 years (range, 60-85). Nineteen (36%) had antecedent hematologic disorder or therapy-related AML; 16 had complex karyotypes (≥3 abnormalities). The complete remission rate was 47% (n = 25), achieved after a median of three cycles of therapy. Nine additional subjects had no morphologic evidence of disease with incomplete count recovery, for an overall response rate of 64% (n = 34). Complete remission was achieved in 52% of subjects presenting with normal karyotype and in 50% of those with complex karyotypes. Median overall and disease-free survival durations were 55 and 46 weeks, respectively. Death within 30 days of initiation of treatment occurred in one subject (2%), death within 8 weeks in 15% of subjects. Given the DNA hypomethylating effect of decitabine, we examined the relationship of clinical response and pretreatment level of miR-29b, previously shown to target DNA methyltransferases. Higher levels of miR-29b were associated with clinical response (P = 0.02). In conclusion, this schedule of decitabine was highly active and well tolerated in this poor-risk cohort of older AML patients. Levels of miR-29b should be validated as a predictive factor for stratification of older AML patients to decitabine treatment.
Therapeutic Potential of the Translation Inhibitor Silvestrol in Hepatocellular Cancer
Although hepatocellular cancers (HCC) frequently arise in the setting of fibrosis and a hepatic regenerative response requiring new cell growth, therapeutic strategies for these cancers have not targeted protein synthesis. Silvestrol, a rocaglate isolated from Aglaiafoveolata, can inhibit protein synthesis by modulating the initiation of translation through the eukaryotic initiation factor 4A. In this study, we evaluated the therapeutic efficacy of silvestrol for HCC. The efficacy of silvestrol was examined using human HCC cells in vitro using an orthotopic tumor cell xenograft model in a fibrotic liver. The impact of silvestrol on the liver was assessed in vivo in wild-type mice. Silvestrol inhibited cell growth with an IC50 of 12.5-86 nM in four different HCC cell lines. In vitro, silvestrol increased apoptosis and caspase 3/7 activity accompanied by loss of mitochondrial membrane potential and decreased expression of Mcl-1 and Bcl-xL. A synergistic effect was observed when silvestrol was combined with other therapeutic agents, with a dose-reduction index of 3.42-fold with sorafenib and 1.75-fold with rapamycin at a fractional effect of 0.5. In vivo, an antitumor effect was observed with 0.4 mg/kg silvestrol compared to controls after one week, and survival of tumor-bearing mice was improved with a median survival time of 42 and 28 days in the silvestrol and control groups, respectively. The effect on survival was not observed in orthotopic xenografts in non-fibrotic livers. Silvestrol treatment in vivo did not alter liver structure. These data identify silvestrol as a novel, structurally unique drug with potent anticancer activity for HCC and support the potential value of targeting initiation of translation in the treatment of HCC.
Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma
Protein arginine methyltransferase PRMT5 interacts with human SWI/SNF complexes and methylates histones H3R8 and H4R3. To elucidate the role of PRMT5 in human cancer, we analyzed PRMT5 expression in normal human B lymphocytes and a panel of lymphoid cancer cell lines as well as mantle cell lymphoma (MCL) clinical samples. We show that PRMT5 protein levels are elevated in all cancer cells, including clinical samples examined despite its low rate of transcription and messenger RNA stability. Remarkably, polysome profiling revealed that PRMT5 mRNA is translated more efficiently in Mino and JeKo MCL cells than in normal B cells, and that decreased miR‐92b and miR‐96 expression augments PRMT5 translation. Consequently, global methylation of H3R8 and H4R3 is increased and is accompanied by repression of suppressor of tumorigenecity 7 (ST7) in lymphoid cancer cells. Furthermore, knockdown of PRMT5 expression reduces proliferation of transformed JeKo and Raji cells. Thus, our studies indicate that aberrant expression of PRMT5 leads to altered epigenetic modification of chromatin, which in turn impacts transcriptional performance of anti‐cancer genes and growth of transformed lymphoid cells.
PRMT5 Is Upregulated in Malignant and Metastatic Melanoma and Regulates Expression of MITF and p27Kip1
Protein arginine methyltransferase-5 (PRMT5) is a Type II arginine methyltransferase that regulates various cellular functions. We hypothesized that PRMT5 plays a role in regulating the growth of human melanoma cells. Immunohistochemical analysis indicated significant upregulation of PRMT5 in human melanocytic nevi, malignant melanomas and metastatic melanomas as compared to normal epidermis. Furthermore, nuclear PRMT5 was significantly decreased in metastatic melanomas as compared to primary cutaneous melanomas. In human metastatic melanoma cell lines, PRMT5 was predominantly cytoplasmic, and associated with its enzymatic cofactor Mep50, but not STAT3 or cyclin D1. However, histologic examination of tumor xenografts from athymic mice revealed heterogeneous nuclear and cytoplasmic PRMT5 expression. Depletion of PRMT5 via siRNA inhibited proliferation in a subset of melanoma cell lines, while it accelerated growth of others. Loss of PRMT5 also led to reduced expression of MITF (microphthalmia-associated transcription factor), a melanocyte-lineage specific oncogene, and increased expression of the cell cycle regulator p27Kip1. These results are the first to report elevated PRMT5 expression in human melanoma specimens and indicate this protein may regulate MITF and p27Kip1 expression in human melanoma cells.
PRMT5 is upregulated in malignant and metastatic melanoma and regulates expression of MITF and p27(Kip1.)
Protein arginine methyltransferase-5 (PRMT5) is a Type II arginine methyltransferase that regulates various cellular functions. We hypothesized that PRMT5 plays a role in regulating the growth of human melanoma cells. Immunohistochemical analysis indicated significant upregulation of PRMT5 in human melanocytic nevi, malignant melanomas and metastatic melanomas as compared to normal epidermis. Furthermore, nuclear PRMT5 was significantly decreased in metastatic melanomas as compared to primary cutaneous melanomas. In human metastatic melanoma cell lines, PRMT5 was predominantly cytoplasmic, and associated with its enzymatic cofactor Mep50, but not STAT3 or cyclin D1. However, histologic examination of tumor xenografts from athymic mice revealed heterogeneous nuclear and cytoplasmic PRMT5 expression. Depletion of PRMT5 via siRNA inhibited proliferation in a subset of melanoma cell lines, while it accelerated growth of others. Loss of PRMT5 also led to reduced expression of MITF (microphthalmia-associated transcription factor), a melanocyte-lineage specific oncogene, and increased expression of the cell cycle regulator p27(Kip1). These results are the first to report elevated PRMT5 expression in human melanoma specimens and indicate this protein may regulate MITF and p27(Kip1) expression in human melanoma cells.
Incidence, description, and timing of serious and opportunistic infections in patients with hairy cell leukemia
Hairy cell leukemia is an uncommon B‐cell malignancy with excellent response to purine analogs and to targeted therapies such as ibrutinib and vemurafenib. However, purine analogs are known to be highly immunosuppressive and the infection burden in this patient population with current therapies is unknown. We therefore conducted a retrospective cohort study following 149 patients. Median follow‐up time was 6.9 years. Thirty‐six percent developed an opportunistic or serious infection requiring hospitalization. Most cases were bacterial and most coincided with neutropenia and/or CD4 T‐lymphopenia. No single treatment agent was significantly associated with increased or decreased incidence of infection. Reassuringly, the cumulative incidence of infections plateaued 2 months after initial treatment suggesting clinically significant immune recovery. Only one patient in our cohort passed away due to infection. Estimated 10‐year overall survival was 99% suggesting that infections may not cause as much mortality as was seen prior to current therapies.
Flavopiridol Pharmacogenetics: Clinical and Functional Evidence for the Role of SLCO1B1/OATP1B1 in Flavopiridol Disposition
Flavopiridol is a cyclin-dependent kinase inhibitor in phase II clinical development for treatment of various forms of cancer. When administered with a pharmacokinetically (PK)-directed dosing schedule, flavopiridol exhibited striking activity in patients with refractory chronic lymphocytic leukemia. This study aimed to evaluate pharmacogenetic factors associated with inter-individual variability in pharmacokinetics and outcomes associated with flavopiridol therapy. Thirty-five patients who received single-agent flavopiridol via the PK-directed schedule were genotyped for 189 polymorphisms in genes encoding 56 drug metabolizing enzymes and transporters. Genotypes were evaluated in univariate and multivariate analyses as covariates in a population PK model. Transport of flavopiridol and its glucuronide metabolite was evaluated in uptake assays in HEK-293 and MDCK-II cells transiently transfected with SLCO1B1. Polymorphisms in ABCC2, ABCG2, UGT1A1, UGT1A9, and SLCO1B1 were found to significantly correlate with flavopiridol PK in univariate analysis. Transport assay results indicated both flavopiridol and flavopiridol-glucuronide are substrates of the SLCO1B1/OATP1B1 transporter. Covariates incorporated into the final population PK model included bilirubin, SLCO1B1 rs11045819 and ABCC2 rs8187710. Associations were also observed between genotype and response. To validate these findings, a second set of data with 51 patients was evaluated, and overall trends for associations between PK and PGx were found to be consistent. Polymorphisms in transport genes were found to be associated with flavopiridol disposition and outcomes. Observed clinical associations with SLCO1B1 were functionally validated indicating for the first time its relevance as a transporter of flavopiridol and its glucuronide metabolite. A second 51-patient dataset indicated similar trends between genotype in the SLCO1B1 and other candidate genes, thus providing support for these findings. Further study in larger patient populations will be necessary to fully characterize and validate the clinical impact of polymorphisms in SLCO1B1 and other transporter and metabolizing enzyme genes on outcomes from flavopiridol therapy.
Single‐center study of outcomes of patients with hairy cell leukemia who contracted SARS‐CoV‐2
Baseline characteristics (N = 14) Age at HCL diagnosis, median (range) 47 (23–67) Sex, n (%) Female 4 (28.6) Male 10 (71.4) COVID-19 diagnosis and vaccination status Vaccinated, n (%) No 3 (21.4) Yes 11 (78.6) First vaccination before positive COVID-19 testing 5 (35.7) First vaccination after positive COVID-19 testing 6 (42.9) Vaccination dose and type, n (%) (n = 11) One dose: The majority of patients in our cohort received COVID-19-directed treatment, which likely improved outcomes. [...]physicians should consider early treatment of COVID-19 with the best available therapies in HCL patients. CONFLICT OF INTEREST STATEMENT James Blachly: AbbVie, AstraZeneca, Astellas, MingSight, patent on a leukemia diagnostic device, patent pending on a leukemia classification scheme.