Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6
result(s) for
"Grezellschak, Sarah"
Sort by:
Distress severity in perceptual anomalies moderates the relationship between prefrontal brain structure and psychosis proneness in nonclinical individuals
by
Grezellschak Sarah
,
Evermann Ulrika
,
Meller, Tina
in
Magnetic resonance imaging
,
Morphometry
,
Phenotypes
2021
In the general population, psychosis risk phenotypes occur independently of attenuated prodromal syndromes. Neurobiological correlates of vulnerability could help to understand their meaningfulness. Interactions between the occurrence of psychotic-like experiences (PLE) and other psychological factors e.g., distress related to PLE, may distinguish psychosis-prone individuals from those without risk of future psychotic disorder. We aimed to investigate whether (a) correlates of total PLE and distress, and (b) symptom dimension-specific moderation effects exist at the brain structural level in non-help-seeking adults reporting PLE below and above the screening criterion for clinical high-risk (CHR). We obtained T1-weighted whole-brain MRI scans from 104 healthy adults from the community without psychosis CHR states for voxel-based morphometry (VBM). Brain structural associations with PLE and PLE distress were analysed with multiple linear regression models. Moderation of PLE by distress severity of two types of positive symptoms from the Prodromal Questionnaire (PQ-16) screening inventory was explored in regions-of-interest after VBM. Total PQ-16 score was positively associated with grey matter volume (GMV) in prefrontal regions, occipital fusiform and lingual gyri (p < 0.05, FDR peak-level corrected). Overall distress severity and GMV were not associated. Examination of distress severity on the positive symptom dimensions as moderators showed reduced strength of the association between PLE and rSFG volume with increased distress severity for perceptual PLE. In this study, brain structural variation was related to PLE level, but not distress severity, suggesting specificity. In healthy individuals, positive relationships between PLE and prefrontal volumes may indicate protective features, which supports the insufficiency of PLE for the prediction of CHR. Additional indicators of vulnerability, such as distress associated with perceptual PLE, change the positive brain structure relationship. Brain structural findings may strengthen clinical objectives through disentanglement of innocuous and risk-related PLE.
Journal Article
Associations of subclinical autistic-like traits with brain structural variation using diffusion tensor imaging and voxel-based morphometry
by
Meller, Tina
,
Jansen, Andreas
,
Kamp-Becker, Inge
in
Autism
,
Autism spectrum disorder
,
autism spectrum quotient
2021
Previous case-control studies of autistic spectrum disorder (ASD) have identified altered brain structure such as altered frontal and temporal cortex volumes, or decreased fractional anisotropy (FA) within the inferior fronto-occipital fasciculus in patients. It remains unclear whether subclinical autistic-like traits might also be related to variation in these brain structures.
In this study, we analyzed magnetic resonance imaging (MRI) data of 250 psychiatrically healthy subjects phenotyped for subclinical autistic-like traits using the Autism Spectrum Quotient (AQ). For data analysis, we used voxel-based morphometry of T1-MRIs (Computational Anatomy Toolbox) and tract-based spatial statistics for diffusion tensor imaging data.
AQ attention switching subscale correlated negatively with FA values in the bilateral uncinate fasciculus as well as the bilateral inferior fronto-occipital fasciculus. Higher AQ attention switching subscale scores were associated with increased mean diffusivity and radial diffusivity values in the uncinate fasciculus, while axial diffusivity values within this tract show a negative correlation. AQ attention to detail subscale correlated positively with gray matter volume in the right pre- and postcentral gyrus.
We demonstrate that individuals with higher levels of autism-spectrum-like features show decreased white matter integrity in tracts associated with higher-level visual processing and increased cortical volume in areas linked to movement sequencing and working memory. Our results resemble regional brain structure alterations found in individuals with ASD. This offers opportunities to further understand the etiology and pathogenesis of the disorder and shows a subclinical continuum perspective.
Journal Article
Superior temporal sulcus folding, functional network connectivity, and autistic-like traits in a non-clinical population
2024
Background
Autistic-like traits (ALT) are prevalent across the general population and might be linked to some facets of a broader autism spectrum disorder (ASD) phenotype. Recent studies suggest an association of these traits with both genetic and brain structural markers in non-autistic individuals, showing similar spatial location of findings observed in ASD and thus suggesting a potential neurobiological continuum.
Methods
In this study, we first tested an association of ALTs (assessed with the AQ questionnaire) with cortical complexity, a cortical surface marker of early neurodevelopment, and then the association with disrupted functional connectivity. We analysed structural T1-weighted and resting-state functional MRI scans in 250 psychiatrically healthy individuals without a history of early developmental disorders, in a first step using the CAT12 toolbox for cortical complexity analysis and in a second step we used regional cortical complexity findings to apply the CONN toolbox for seed-based functional connectivity analysis.
Results
Our findings show a significant negative correlation of both AQ total and AQ attention switching subscores with left superior temporal sulcus (STS) cortical folding complexity, with the former being significantly correlated with STS to left lateral occipital cortex connectivity, while the latter showed significant positive correlation of STS to left inferior/middle frontal gyrus connectivity (
n
= 233; all
p
< 0.05, FWE cluster-level corrected). Additional analyses also revealed a significant correlation of AQ attention to detail subscores with STS to left lateral occipital cortex connectivity.
Limitations
Phenotyping might affect association results (e.g. choice of inventories); in addition, our study was limited to subclinical expressions of autistic-like traits.
Conclusions
Our findings provide further evidence for biological correlates of ALT even in the absence of clinical ASD, while establishing a link between structural variation of early developmental origin and functional connectivity.
Journal Article
Modelling the overlap and divergence of autistic and schizotypal traits on hippocampal subfield volumes and regional cerebral blood flow
2024
Psychiatric disorders show high co-morbidity, including co-morbid expressions of subclinical psychopathology across multiple disease spectra. Given the limitations of classical case-control designs in elucidating this overlap, new approaches are needed to identify biological underpinnings of spectra and their interaction. We assessed autistic-like traits (using the Autism Quotient, AQ) and schizotypy - as models of subclinical expressions of disease phenotypes and examined their association with volumes and regional cerebral blood flow (rCBF) of anterior, mid- and posterior hippocampus segments from structural MRI scans in 318 and arterial spin labelling (ASL) in 346 nonclinical subjects, which overlapped with the structural imaging sample (
N
= 298). We demonstrate significant interactive effects of positive schizotypy and AQ social skills as well as of positive schizotypy and AQ imagination on hippocampal subfield volume variation. Moreover, we show that AQ attention switching modulated hippocampal head rCBF, while positive schizotypy by AQ attention to detail interactions modulated hippocampal tail rCBF. In addition, we show significant correlation of hippocampal volume and rCBF in both region-of-interest and voxel-wise analyses, which were robust after removal of variance related to schizotypy and autistic traits. These findings provide empirical evidence for both the modulation of hippocampal subfield structure and function through subclinical traits, and in particular how only the interaction of phenotype facets leads to significant reductions or variations in these parameters. This makes a case for considering the synergistic impact of different (subclinical) disease spectra on transdiagnostic biological parameters in psychiatry.
Journal Article
Nonclinical psychotic‐like experiences and schizotypy dimensions: Associations with hippocampal subfield and amygdala volumes
2021
Schizotypy and psychotic‐like experiences (PLE) form part of the wider psychosis continuum and may have brain structural correlates in nonclinical cohorts. This study aimed to compare the effects of differential schizotypy dimensions, PLE, and their interaction on hippocampal subfields and amygdala volumes in the absence of clinical psychopathology. In a cohort of 367 psychiatrically healthy individuals, we assessed schizotypal traits using the Oxford‐Liverpool Inventory of Life Experiences (O‐LIFE) and PLE using the short form of the Prodromal Questionnaire (PQ‐16). Based on high‐resolution structural MRI scans, we used automated segmentation to estimate volumes of limbic structures. Sex and total intracranial volume (Step 1), PLE and schizotypy dimensions (Step 2), and their interaction terms (Step 3) were entered as regressors for bilateral amygdala and hippocampal subfield volumes in hierarchical multiple linear regression models. Positive schizotypy, but not PLE, was negatively associated with left amygdala and subiculum volumes. O‐LIFE Impulsive Nonconformity, as well as the two‐way interaction between positive schizotypy and PLE, were associated with larger left subiculum volumes. None of the estimators for right hemispheric hippocampal subfield volumes survived correction for multiple comparisons. Our findings support differential associations of hippocampus subfield volumes with trait dimensions rather than PLE, and support overlap and interactions between psychometric positive schizotypy and PLE. In a healthy cohort without current psychosis risk syndromes, the positive association between PLE and hippocampal subfield volume occurred at a high expression of positive schizotypy. Further studies combining stable, transient, and genetic parameters are required.
This study examined structural variation of the hippocampal subfields and the amygdala associated with subclinical dimensions of schizotypy, and psychotic‐like experiences (PLE). Volume alterations were associated with schizotypal traits, rather than PLE. In the left subiculum, the expression of PLE at higher positive schizotypy was associated with larger volumes.
Journal Article