Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
60 result(s) for "Griebel, Guy"
Sort by:
50 years of hurdles and hope in anxiolytic drug discovery
Key Points Anxiety disorders are frequently diagnosed chronic, disabling conditions that impose enormous societal costs. The main anxiety syndromes include panic disorder, agoraphobia, social anxiety disorder, generalized anxiety disorder, specific phobias, obsessive-compulsive disorder and post-traumatic stress disorder. Treatment options, which include drugs acting on the GABA (γ-aminobutyric acid)–benzodiazepine and 5-hydroxytryptamine (5-HT; also known as serotonin) systems are available for most of these disorders. However, these compounds have limited efficacy and/or tolerability. The urgent need for new, alternative treatments for anxiety has generated a vast amount of preclinical data and led to many drugs being taken though the laboratory to the clinic. The clinical outcome of this huge effort has been disappointing, however, with laboratory rodent studies predicting very few promising new therapeutic leads. This Review analyses the major trends from the preclinical data accrued over the past 50 years and highlights the most intensively investigated neurotransmitter systems: the GABA–benzodiazepine, serotonin, neuropeptide, glutamate and endocannabinoid systems. We identify a number of key issues that may have hampered progress in the field. Oft-cited explanations for the poor translational track record of preclinical anxiety studies include the lack of validity of the available rodent tests, the use of non-disease-susceptible animals, insufficient knowledge of the neurobiological anxiety systems and too much focus by pharmaceutical companies on single targets to find new anxiolytics. Here, we offer recommendations for how anxiolytic drug discovery can be more effective going forward. Vast efforts have been made to develop novel anxiolytic drugs that improve on those that target the GABA (γ-aminobutyric acid)–benzodiazepine system, but promising results in rodents have rarely translated into effectiveness in humans. Griebel and Holmes analyse the major trends from a database of published preclinical studies on novel anxiolytic agents in the past 50 years, highlight issues that may have hampered progress and offer recommendations to improve anxiolytic drug discovery. Anxiety disorders are the most prevalent group of psychiatric diseases, and have high personal and societal costs. The search for novel pharmacological treatments for these conditions is driven by the growing medical need to improve on the effectiveness and the side effect profile of existing drugs. A huge volume of data has been generated by anxiolytic drug discovery studies, which has led to the progression of numerous new molecules into clinical trials. However, the clinical outcome of these efforts has been disappointing, as promising results with novel agents in rodent studies have very rarely translated into effectiveness in humans. Here, we analyse the major trends from preclinical studies over the past 50 years conducted in the search for new drugs beyond those that target the prototypical anxiety-associated GABA (γ-aminobutyric acid)–benzodiazepine system, which have focused most intensively on the serotonin, neuropeptide, glutamate and endocannabinoid systems. We highlight various key issues that may have hampered progress in the field, and offer recommendations for how anxiolytic drug discovery can be more effective in the future.
The selective GSK3 inhibitor, SAR502250, displays neuroprotective activity and attenuates behavioral impairments in models of neuropsychiatric symptoms of Alzheimer’s disease in rodents
Glycogen synthase kinase 3 (GSK3) has been identified as a promising target for the treatment of Alzheimer’s disease (AD), where abnormal activation of this enzyme has been associated with hyperphosphorylation of tau proteins. This study describes the effects of the selective GSK3 inhibitor, SAR502250, in models of neuroprotection and neuropsychiatric symptoms (NPS) associated with AD. In P301L human tau transgenic mice, SAR502250 attenuated tau hyperphosphorylation in the cortex and spinal cord. SAR502250 prevented the increase in neuronal cell death in rat embryonic hippocampal neurons following application of the neurotoxic peptide, Aβ 25–35 . In behavioral studies, SAR502250 improved the cognitive deficit in aged transgenic APP(SW)/Tau(VLW) mice or in adult mice after infusion of Aβ 25–35 . It attenuated aggression in the mouse defense test battery and improved depressive-like state of mice in the chronic mild stress procedure after 4 weeks of treatment. Moreover, SAR502250 decreased hyperactivity produced by psychostimulants. In contrast, the drug failed to modify anxiety-related behaviors or sensorimotor gating deficit. This profile confirms the neuroprotective effects of GSK3 inhibitors and suggests an additional potential in the treatment of some NPS associated with AD.
The selective reversible FAAH inhibitor, SSR411298, restores the development of maladaptive behaviors to acute and chronic stress in rodents
Enhancing endogenous cannabinoid (eCB) signaling has been considered as a potential strategy for the treatment of stress-related conditions. Fatty acid amide hydrolase (FAAH) represents the primary degradation enzyme of the eCB anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). This study describes a potent reversible FAAH inhibitor, SSR411298. The drug acts as a selective inhibitor of FAAH, which potently increases hippocampal levels of AEA, OEA and PEA in mice. Despite elevating eCB levels, SSR411298 did not mimic the interoceptive state or produce the behavioral side-effects (memory deficit and motor impairment) evoked by direct-acting cannabinoids. When SSR411298 was tested in models of anxiety, it only exerted clear anxiolytic-like effects under highly aversive conditions following exposure to a traumatic event, such as in the mouse defense test battery and social defeat procedure. Results from experiments in models of depression showed that SSR411298 produced robust antidepressant-like activity in the rat forced-swimming test and in the mouse chronic mild stress model, restoring notably the development of inadequate coping responses to chronic stress. This preclinical profile positions SSR411298 as a promising drug candidate to treat diseases such as post-traumatic stress disorder, which involves the development of maladaptive behaviors.
Nicotine-Associated Cues Maintain Nicotine-Seeking Behavior in Rats Several Weeks after Nicotine Withdrawal: Reversal by the Cannabinoid (CB1) Receptor Antagonist, Rimonabant (SR141716)
Conditioned stimuli are important for nicotine dependence and may trigger craving and relapse after prolonged nicotine abstinence. However, little is known about the pharmacology of this process. Among the systems that have been shown to play a role in drug-seeking behavior is the endocannabinoid transmission. Therefore, the present study examined the resistance to extinction of drug-seeking behavior elicited by nicotine-associated environmental stimuli and the effects of the selective CB1 cannabinoid antagonist rimonabant (SR141716) on the reinforcing effects of nicotine-related stimuli. Rats were trained to self-administer nicotine (0.03 mg/kg/injection, i.v.) under conditions in which responding was reinforced jointly by response-contingent nicotine injections and stimuli (light and tone). After self-administration acquisition, nicotine was withdrawn and lever pressing was only reinforced by contingent presentation of the audiovisual stimuli. Under such a condition, responding persisted for 3 months, following which nonpresentation of the cues produced a progressive extinction of responding. As expected, rats trained to lever-press for saline injections paired with the audiovisual stimuli did not acquire the self-administration. These findings indicate that the cues required learned association with nicotine to acquire reinforcing properties and to function as conditioned reinforcers. When administered 1 month following nicotine withdrawal, rimonabant (1 mg/kg, i.p.) decreased conditioned behavior. These results showing the persistence of a nicotine-conditioned behavior are congruent with the role of nicotine-related environmental stimuli in nicotine craving in abstinent smokers. Rimonabant, which has been shown previously to reduce nicotine self-administration, may be effective not only as an aid for smoking cessation but also in the maintenance of abstinence.
Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning?
Key Points The search for novel drugs for psychiatric disorders is driven by the growing medical need to improve on the effectiveness and side-effect profile of currently available therapies. The rapid advances in understanding the structure and regulation of genes encoding neuropeptides, the characterization of their receptors, the synthesis of non-peptide receptor ligands and the wealth of animal data have made neuropeptide receptors attractive therapeutic targets for the treatment of psychiatric disorders. However, clinical studies with synthetic neuropeptide ligands have been unable to confirm the promise predicted by animal studies. In this Review, we analyse preclinical and clinical results for neuropeptide receptor ligands that have been studied in clinical trials for psychiatric diseases, including agents that target the receptors for tachykinins, corticotropin-releasing factor, vasopressin and neurotensin, and suggest new ways to exploit the full potential of these candidate drugs. Although drugs targeting neuropeptide receptors have not met their expectations, we do not believe that the whole concept should be considered a failure. Among the most commonly noted reasons for the failure to successfully develop neuropeptide receptor ligands for psychiatric disorders is the poor predictivity of the animal models that have been used to screen these molecules. Drug selection based on data from animal models must be much more stringent and use a variety of models assessing different aspects of the disease. The future development of drugs targeting neuropeptide receptors also has to bear in mind the specificity of their mechanism of action. Genetic tests and biomarkers are needed to identify subgroups of patients in whom a specific neuropeptidergic mechanism accounts for the clinical condition and who would thus be anticipated to benefit from a specific drug intervention. A wealth of preclinical data on the role of neuropeptides in modulating behaviour has encouraged extensive efforts to target neuropeptide receptors for the treatment of psychiatric diseases, but so far clinical studies have not led to marketed drugs. This article analyses research on neuropeptide receptor ligands that have been studied in clinical trials, including agents that target the receptors for tachykinins, corticotropin-releasing factor and vasopressin, and suggests new ways to realize their full potential. The search for novel drugs for treating psychiatric disorders is driven by the growing medical need to improve on the effectiveness and side-effect profile of currently available therapies. Given the wealth of preclinical data supporting the role of neuropeptides in modulating behaviour, pharmaceutical companies have been attempting to target neuropeptide receptors for over two decades. However, clinical studies with synthetic neuropeptide ligands have been unable to confirm the promise predicted by studies in animal models. Here, we analyse preclinical and clinical results for neuropeptide receptor ligands that have been studied in clinical trials for psychiatric diseases, including agents that target the receptors for tachykinins, corticotropin-releasing factor, vasopressin and neurotensin, and suggest new ways to exploit the full potential of these candidate drugs.
Selective blockade of the hydrolysis of the endocannabinoid 2-arachidonoylglycerol impairs learning and memory performance while producing antinociceptive activity in rodents
Monoacylglycerol lipase (MAGL) represents a primary degradation enzyme of the endogenous cannabinoid (eCB), 2-arachidonoyglycerol (2-AG). This study reports a potent covalent MAGL inhibitor, SAR127303. The compound behaves as a selective and competitive inhibitor of mouse and human MAGL, which potently elevates hippocampal levels of 2-AG in mice. In vivo , SAR127303 produces antinociceptive effects in assays of inflammatory and visceral pain. In addition, the drug alters learning performance in several assays related to episodic, working and spatial memory. Moreover, long term potentiation (LTP) of CA1 synaptic transmission and acetylcholine release in the hippocampus, two hallmarks of memory function, are both decreased by SAR127303. Although inactive in acute seizure tests, repeated administration of SAR127303 delays the acquisition and decreases kindled seizures in mice, indicating that the drug slows down epileptogenesis, a finding deserving further investigation to evaluate the potential of MAGL inhibitors as antiepileptics. However, the observation that 2-AG hydrolysis blockade alters learning and memory performance, suggests that such drugs may have limited value as therapeutic agents.
Anxiolytic- and Antidepressant-like Effects of the Non-Peptide Vasopressin V1b Receptor Antagonist, SSR149415, Suggest an Innovative Approach for the Treatment of Stress-Related Disorders
The limbic localization of the arginine vasopressin V1b receptor has prompted speculation as to a potential role of this receptor in the control of emotional processes. To investigate this possibility, we have studied the behavioral effects of SSR149415, the first selective and orally active non-peptide antagonist of vasopressin V1b receptors, in a variety of classical (punished drinking, elevated plus-maze, and light/dark tests) and atypical (fear/anxiety defense test battery and social defeat-induced anxiety) rodent models of anxiety, and in two models of depression [forced swimming and chronic mild stress (CMS)]. When tested in classical tests of anxiety, SSR149415 produced anxiolytic-like activity at doses that ranged from 1 to 30 mg/kg (i.p. or p.o.), but the magnitude of these effects was overall less than that of the benzodiazepine anxiolytic diazepam, which was used as a positive control. In contrast, SSR149415 produced clear-cut anxiolytic-like activity in models involving traumatic stress exposure, such as the social defeat paradigm and the defense test battery (1-30 mg/kg, p.o.). In the forced swimming test, SSR149415 (10-30 mg/kg, p.o.) produced antidepressant-like effects in both normal and hypophysectomized rats. Moreover, in the CMS model in mice, repeated administration of SSR149415 (10 and 30 mg/kg, i.p.) for 39 days improved the degradation of the physical state, anxiety, despair, and the loss of coping behavior produced by stress. These findings point to a role for vasopressin in the modulation of emotional processes via the V1b receptor, and suggest that its blockade may represent a novel avenue for the treatment of affective disorders.
Neurochemical, Electrophysiological and Pharmacological Profiles of the Selective Inhibitor of the Glycine Transporter-1 SSR504734, a Potential New Type of Antipsychotic
Noncompetitive N-methyl-D-aspartate (NMDA) blockers induce schizophrenic-like symptoms in humans, presumably by impairing glutamatergic transmission. Therefore, a compound potentiating this neurotransmission, by increasing extracellular levels of glycine (a requisite co-agonist of glutamate), could possess antipsychotic activity. Blocking the glycine transporter-1 (GlyT1) should, by increasing extracellular glycine levels, potentiate glutamatergic neurotransmission. SSR504734, a selective and reversible inhibitor of human, rat, and mouse GlyT1 (IC50=18, 15, and 38 nM, respectively), blocked reversibly the ex vivo uptake of glycine (mouse cortical homogenates: ID50: 5 mg/kg i.p.), rapidly and for a long duration. In vivo, it increased (minimal efficacious dose (MED): 3 mg/kg i.p.) extracellular levels of glycine in the rat prefrontal cortex (PFC). This resulted in an enhanced glutamatergic neurotransmission, as SSR504734 potentiated NMDA-mediated excitatory postsynaptic currents (EPSCs) in rat hippocampal slices (minimal efficacious concentration (MEC): 0.5 microM) and intrastriatal glycine-induced rotations in mice (MED: 1 mg/kg i.p.). It normalized activity in rat models of hippocampal and PFC hypofunctioning (through activation of presynaptic CB1 receptors): it reversed the decrease in electrically evoked [3H]acetylcholine release in hippocampal slices (MEC: 10 nM) and the reduction of PFC neurons firing (MED: 0.3 mg/kg i.v.). SSR504734 prevented ketamine-induced metabolic activation in mice limbic areas and reversed MK-801-induced hyperactivity and increase in EEG spectral energy in mice and rats, respectively (MED: 10-30 mg/kg i.p.). In schizophrenia models, it normalized a spontaneous prepulse inhibition deficit in DBA/2 mice (MED: 15 mg/kg i.p.), and reversed hypersensitivity to locomotor effects of d-amphetamine and selective attention deficits (MED: 1-3 mg/kg i.p.) in adult rats treated neonatally with phencyclidine. Finally, it increased extracellular dopamine in rat PFC (MED: 10 mg/kg i.p.). The compound showed additional activity in depression/anxiety models, such as the chronic mild stress in mice (10 mg/kg i.p.), ultrasonic distress calls in rat pups separated from their mother (MED: 1 mg/kg s.c.), and the increased latency of paradoxical sleep in rats (MED: 30 mg/kg i.p.). In conclusion, SSR504734 is a potent and selective GlyT1 inhibitor, exhibiting activity in schizophrenia, anxiety and depression models. By targeting one of the primary causes of schizophrenia (hypoglutamatergy), it is expected to be efficacious not only against positive but also negative symptoms, cognitive deficits, and comorbid depression/anxiety states.
Procognitive and antipsychotic efficacy of glycine transport 1 inhibitors (GlyT1) in acute and neurodevelopmental models of schizophrenia: latent inhibition studies in the rat
Rationale SSR103800 and SSR504734 are novel glycine transport 1 (GlyT1) inhibitors with therapeutic potential for the treatment of schizophrenia. Objective The present studies investigated the effects of GlyT1 inhibitors in acute pharmacological and neurodevelopmental models of schizophrenia using latent inhibition in the rat; these latent inhibition (LI) models are believed to be predictive for treatments of positive, negative, and cognitive aspects of schizophrenia. Materials and methods LI, the poorer conditioning to a previously irrelevant stimulus, was measured in a conditioned emotional response procedure in male rats. The effects of SSR103800 or SSR504734 (both at 1, 3, and 10 mg/kg, i.p.) were determined on amphetamine-induced disrupted LI, MK-801-induced abnormally persistent LI, and neurodevelopmentally induced abnormally persistent LI in adult animals that had been neonatally treated with a nitric oxide synthase inhibitor. Results SSR103800 (1 and 3 mg/kg) and SSR504734 (1 and 10 mg/kg) potentiated LI under conditions where LI was not present in nontreated controls and SSR103800 (1 mg/kg) reversed amphetamine-induced disrupted LI while not affecting LI on its own. Additionally, SSR103800 (1 and 3 mg/kg) and SSR504734 (3 and 10 mg/kg) reversed abnormally persistent LI induced by MK-801. In the neurodevelopmental model, SSR504734 (3 and 10 mg/kg) reverted the LI back to control (normal) levels. Conclusions These preclinical data, from acute and neurodevelopmental models, suggest that GlyT1 inhibition may exhibit activity in the positive, negative, and cognitive symptom domains of schizophrenia.