Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
520 result(s) for "Groß, Andrea"
Sort by:
Selumetinib in Children with Inoperable Plexiform Neurofibromas
Neurofibromatosis involves activation of the RAS pathway. Inhibition of MEK, a component of the pathway, with selumetinib was performed in 50 children with inoperable disease. A total of 70% had a response, which was maintained in the majority for more than a year. Pain relief, improved function, and higher quality of life were also observed.
Synthetic Peptides as Protein Mimics
The design and generation of molecules capable of mimicking the binding and/or functional sites of proteins represents a promising strategy for the exploration and modulation of protein function through controlled interference with the underlying molecular interactions. Synthetic peptides have proven an excellent type of molecule for the mimicry of protein sites because such peptides can be generated as exact copies of protein fragments, as well as in diverse chemical modifications, which includes the incorporation of a large range of non-proteinogenic amino acids as well as the modification of the peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, such modifications also increase the proteolytic stability of the molecules, enhancing their utility for biological applications. This article reviews recent advances by this and other laboratories in the use of synthetic protein mimics to modulate protein function, as well as to provide building blocks for synthetic biology.
A molecular basis for neurofibroma-associated skeletal manifestations in NF1
Purpose Plexiform neurofibromas (pNF) develop in children with neurofibromatosis type 1 (NF1) and can be associated with several skeletal comorbidities. Preclinical mouse studies revealed Nf1 deficiency in osteoprogenitor cells disrupts, in a MEK-dependent manner, pyrophosphate (PPi) homeostasis and skeletal mineralization. The etiology of NF-associated skeletal manifestations remains unknown. Methods We used mouse models of NF1 neurofibromas to assess bone mineralization of skeletal structures adjacent to tumors. Expression of genes involved in pyrophosphate homeostasis was assessed in mouse and human NF tumors and Schwann cell cultures. We used dual-energy X-ray absorptiometry (DXA) to assess tumor-associated changes in bone mineral density (BMD) in an individual with NF1 following treatment with the MEK inhibitor selumetinib. Results We detected increased nonmineralized bone surfaces adjacent to tumors in mouse models of NF1 neurofibromas. Expression of Enpp1 , a PPi-generating ectophosphatase, and ANKH , a PPi transporter, was increased in mouse and human neurofibroma-derived tissues and Schwann cells, respectively. In one patient, tumor-associated reductions in BMD were partially rescued following therapy with selumetinib. Conclusion Results indicate that NF-associated skeletal pathologies in NF1 are associated with dysregulated pyrophosphate homeostasis in adjacent NF tumors and suggest that treatment of NFs with MEK inhibitors may improve skeletal manifestations of the disease.
Croatian Action on Salt and Health (CRASH): On the Road to Success—Less Salt, More Health
The World Health Organization recommends adjusting salt intake as a part of the nine global targets to reduce premature mortality from non-communicable chronic diseases as a priority and the most cost-effective intervention. In 2006, the main aim of the Croatian Action on Salt and Health was to decrease salt intake by 16% because of its critical intake and consequences on human health. We have organized educative activities to increase awareness on salt harmfulness, define food categories of prime interest, collaborate with industries and determine salt intake (24 h urine sodium excretion). It was determined that the proportion of salt in ready-to-eat baked bread should not exceed 1.4%. In the period 2014–2022, salt in semi-white bread was reduced by 14%, 22% in bakery and 25% in the largest meat industry. Awareness of the harmfulness of salt on health increased from 65.3% in 2008 to 96.9% in 2023 and salt intake was reduced by 15.9–1.8 g/day (22.8% men, 11.7% women). In the last 18 years, a significant decrease in salt intake was achieved in Croatia, awareness of its harmfulness increased, collaboration with the food industry was established and regulatory documents were launched. However, salt intake is still very high, underlying the need for continuation of efforts and even stronger activities.
The Landscape of US and Global Rare Tumor Research Programs: A Systematic Review
Rare cancers and other rare nonmalignant tumors comprise 25% of all cancer diagnoses and account for 25% of all cancer deaths. They are difficult to study due to many factors, including infrequent occurrence, lack of a universal infrastructure for data and/or tissue collection, and a paucity of disease models to test potential treatments. For each individual rare cancer, the limited number of diagnosed cases makes it difficult to recruit sufficient patients for clinical studies, and rare cancer research studies are often siloed. As a result, progress has been slow for many of these cancers. While rare cancer research efforts have increased over time, the breadth of the research landscape is not known. A recent literature search revealed a sharp increase in rare tumor, and rare cancer publications began in the early 2000s. To identify rare cancer research efforts being conducted in the US and globally, we conducted an online search of rare tumor/rare cancer research programs and identified 76 programs. To gain a deeper understanding of these programs, we composed and conducted a survey to ask programs for details about their research efforts. Of the 42 programs contacted to complete the survey, 23 programs responded. Survey results show most programs are collecting clinical data, molecular data, and biospecimens, and many are conducting molecular analyses. This landscape analysis demonstrates that multiple rare cancer research efforts are ongoing, and the rare cancer community may benefit from collaboration among stakeholders to accelerate research and improve patient outcomes. Oncologists interested in rare cancers can use this review as a roadmap for navigating current clinical research opportunities in rare cancers and for identifying collaborators studying rare tumors of interest, potentially facilitating progress in these hard-to-study tumors.
Assessment of Toxic and Trace Elements in Multifloral Honeys from Two Regions of Continental Croatia
Element concentrations were measured in multifloral honeys sampled from Central and Eastern Croatia. The mean levels of elements ranged from (µg/kg): Al 323–7228, Cu 103–1033, Cr 14.4–139, Fe 295–2336, Ni 122–523, Pb 9.65–154, Zn 442–2025. In all samples, As and Cd content were below the LOD values. Significant differences in the concentrations of Al, Cr, Cu, Fe, Pb and Zn (p < 0.01) were found in honeys from different locations within regions and within locations of each region. Also, significant differences in total element contents between the two regions were determined for Cr and Cu (p < 0.01). No significant differences were observed in total Al, Fe, Pb and Zn levels between regions. The highest Al, Cr, Cu, Fe and Zn concentrations were measured in Central Croatia, while Ni and Pb in Eastern Croatia. The results confirm the decisive influence of collection location on the composition of toxic and trace elements in honey.
Pharmacogenetic and clinical predictors of ondansetron failure in a diverse pediatric oncology population
Purpose Chemotherapy-induced nausea and vomiting (CINV) is a frequently seen burdensome adverse event of cancer therapy. The 5-HT3 receptor antagonist ondansetron has improved the rates of CINV but, unfortunately, up to 30% of patients do not obtain satisfactory control. This study examined whether genetic variations in a relevant drug-metabolizing enzyme (CYP2D6), transporter (ABCB1), or receptor (5-HT3) were associated with ondansetron failure. Methods DNA was extracted from blood and used to genotype: ABCB1 (3435C > T (rs1045642) and G2677A/T (rs2032582)), 5-HT3RB (rs3758987 T > C and rs45460698 (delAAG/dupAAG)), and CYP2D6 variants. Ondansetron failure was determined by review of the medical records and by patient-reported outcomes (PROs). Results One hundred twenty-nine patients were approached; 103 consented. Participants were less than 1 to 33 years (mean 6.85). A total of 39.8% was female, 58.3% was White (22.3% Black, 19.4% other), and 24.3% was Hispanic. A majority had leukemia or lymphoma, and 41 (39.8%) met the definition of ondansetron failure. Of variants tested, rs45460698 independently showed a significant difference in risk of ondansetron failure between a mutant (any deletion) and normal allele ( p  = 0.0281, OR 2.67). Age and BMI were both predictive of ondansetron failure (age > 12 ( OR 1.12, p  = 0.0012) and higher BMI ( OR 1.13, p  = 0.0119)). In multivariate analysis, age > 12 was highly predictive of ondansetron failure ( OR 7.108, p  = 0.0008). rs45460698 was predictive when combined with an increased nausea phenotype variant of rs1045642 ( OR 3.45, p  = 0.0426). Conclusion Select phenotypes of 5-HT3RB and ABCB1, age, and potentially BMI can help predict increased risk for CINV in a diverse pediatric oncology population.
snRNA-seq of human cutaneous neurofibromas before and after selumetinib treatment implicates role of altered Schwann cell states, inter-cellular signaling, and extracellular matrix in treatment response
Neurofibromatosis Type 1 (NF1) is caused by loss of function variants in the NF1 gene. Most patients with NF1 develop skin lesions called cutaneous neurofibromas (cNFs). Currently the only approved therapeutic for NF1 is selumetinib, a mitogen -activated protein kinase (MEK) inhibitor. The purpose of this study was to analyze the transcriptome of cNF tumors before and on selumetinib treatment to understand both tumor composition and response. We obtained biopsy sets of tumors both pre- and on- selumetinib treatment from the same individuals and were able to collect sets from four separate individuals. We sequenced mRNA from 5844 nuclei and identified 30,442 genes in the untreated group and sequenced 5701 nuclei and identified 30,127 genes in the selumetinib treated group. We identified and quantified distinct populations of cells (Schwann cells, fibroblasts, pericytes, myeloid cells, melanocytes, keratinocytes, and two populations of endothelial cells). While we anticipated that cell proportions might change with treatment, we did not identify any one cell population that changed significantly, likely due to an inherent level of variability between tumors. We also evaluated differential gene expression based on drug treatment in each cell type. Ingenuity pathway analysis (IPA) was also used to identify pathways that differ on treatment. As anticipated, we identified a significant decrease in ERK/MAPK signaling in cells including Schwann cells but most specifically in myeloid cells. Interestingly, there is a significant decrease in opioid signaling in myeloid and endothelial cells; this downward trend is also observed in Schwann cells and fibroblasts. Cell communication was assessed by RNA velocity, Scriabin, and CellChat analyses which indicated that Schwann cells and fibroblasts have dramatically altered cell states defined by specific gene expression signatures following treatment (RNA velocity). There are dramatic changes in receptor-ligand pairs following treatment (Scriabin), and robust intercellular signaling between virtually all cell types associated with extracellular matrix (ECM) pathways (Collagen, Laminin, Fibronectin, and Nectin) is downregulated after treatment. These response specific gene signatures and interaction pathways could provide clues for understanding treatment outcomes or inform future therapies.
Clinical and molecular features of NDM-producing Acinetobacter baumannii in a multicenter study in Israel
Background NDM-producing Acinetobacter baumannii (NDMAb) were reported sporadically worldwide but little is known about the transmission, epidemiology and clinical features of NDMAb-infected patients. The goals of this study were to characterize (1) the epidemiology and clinical features of NDMAb–infected patients; (2) the microbiological and molecular features of NDMAb isolates and (3) the transmission networks of NDMAb within healthcare facilities. Methods The study was conducted at the Tel-Aviv Sourasky, Rambam and Sha’are-Zedek Medical centers (TASMC, RMC and SZMC, respectively) in Israel. All cases detected between January 2018 and July 2019 were included. Phylogenetic analysis was based on core genome SNP distances. Clonal transmission was defined according to molecular (≤ 5 SNP) and epidemiological criteria (overlapping hospital stay). NDMAb cases were compared at a ratio of 1:2 with non-NDM carbapenem-resistant A. baumannii (CRAb) cases. Results The study included 54 NDMAb-positive out of 857 CRAb patients, including 6/179 (3.3%) in TASMC, 18/441 (4.0%) in SZMC and 30/237 (12.6%) in RMC. Patients infected by NDMAb had similar clinical features and risk factors as patients with non-NDM CRAb. The length-of-stay was higher in NDMAb cases (48.5 days vs. 36 days, respectively, p = 0.097) and the in-hospital mortality was similarly high in both groups. Most isolates (41/54, 76%) were first detected from surveillance culture. The majority of isolates harbored the bla NDM−2 gene allele (n = 33), followed by the bla NDM−1 (n = 20) allele and the bla NDM−4 allele (n = 1). The majority of isolates were related within the ST level to other isolates in SZMC and RMC: 17/18 and 27/30 isolates, respectfully. The common ST’s were the bla NDM−1 harboring ST-2 (n = 3) and ST-107 (n = 8) in SZMC and the bla NDM−2 harboring ST-103 in SZMC (n = 6) and in RMC (n = 27). All bla NDM alleles were located within a conserved mobile genetic environment flanked by the IS Ab125 and IS91 family transposon. Clonal transmission was identified in most hospital-acquired cases in RMC and SZMC. Conclusion NDMAb constitutes a minor part of CRAb cases and are clinically similar to non-NDM CRAb. Transmission of NDMAb occurs mostly by clonal spread.
Dual Mode NOx Sensor: Measuring Both the Accumulated Amount and Instantaneous Level at Low Concentrations
The accumulating-type (or integrating-type) NOx sensor principle offers two operation modes to measure low levels of NOx: The direct signal gives the total amount dosed over a time interval and its derivative the instantaneous concentration. With a linear sensor response, no baseline drift, and both response times and recovery times in the range of the gas exchange time of the test bench (5 to 7 s), the integrating sensor is well suited to reliably detect low levels of NOx. Experimental results are presented demonstrating the sensor’s integrating properties for the total amount detection and its sensitivity to both NO and to NO2. We also show the correlation between the derivative of the sensor signal and the known gas concentration. The long-term detection of NOx in the sub-ppm range (e.g., for air quality measurements) is discussed. Additionally, a self-adaption of the measurement range taking advantage of the temperature dependency of the sensitivity is addressed.