Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
42
result(s) for
"Grohmann, Elisabeth"
Sort by:
Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms
by
Grohmann, Elisabeth
,
Michaelis, Claudia
in
Antibiotic resistance
,
antibiotic resistance genes
,
Antibiotics
2023
Most bacteria attach to biotic or abiotic surfaces and are embedded in a complex matrix which is known as biofilm. Biofilm formation is especially worrisome in clinical settings as it hinders the treatment of infections with antibiotics due to the facilitated acquisition of antibiotic resistance genes (ARGs). Environmental settings are now considered as pivotal for driving biofilm formation, biofilm-mediated antibiotic resistance development and dissemination. Several studies have demonstrated that environmental biofilms can be hotspots for the dissemination of ARGs. These genes can be encoded on mobile genetic elements (MGEs) such as conjugative and mobilizable plasmids or integrative and conjugative elements (ICEs). ARGs can be rapidly transferred through horizontal gene transfer (HGT) which has been shown to occur more frequently in biofilms than in planktonic cultures. Biofilm models are promising tools to mimic natural biofilms to study the dissemination of ARGs via HGT. This review summarizes the state-of-the-art of biofilm studies and the techniques that visualize the three main HGT mechanisms in biofilms: transformation, transduction, and conjugation.
Journal Article
Antimicrobials Functioning through ROS-Mediated Mechanisms: Current Insights
by
Vaishampayan, Ankita
,
Grohmann, Elisabeth
in
Antibiotic resistance
,
Antibiotics
,
Antiinfectives and antibacterials
2021
Antibiotic resistance and infections caused by multidrug-resistant bacteria are global health concerns. Reducing the overuse and misuse of antibiotics is the primary step toward minimizing the antibiotic resistance crisis. Thus, it is imperative to introduce and implement novel antimicrobial strategies. Recently, several alternative antimicrobials targeting oxidative stress in bacteria have been studied and shown to be promising. Oxidative stress occurs when bacterial cells fail to detoxify the excessive reactive oxygen species (ROS) accumulated in the cells. Bacteria deploy numerous defense mechanisms against oxidative stress. The oxidative stress response is not essential for the normal growth of bacteria, but it is crucial for their survival. This toxic oxidative stress is created by the host immune response or antimicrobials generating ROS. ROS possess strong oxidation potential and cause serious damage to nucleic acids, lipids, and proteins. Since ROS-based antimicrobials target multiple sites in bacteria, these antimicrobials have attracted the attention of several researchers. In this review, we present recent ROS-based alternative antimicrobials and strategies targeting oxidative stress which might help in mitigating the problem of antibiotic resistance and dissemination.
Journal Article
Special Issue “Multidrug-Resistant Bacteria in the Environment, Their Resistance and Transfer Mechanisms”
2023
Multidrug-resistant bacteria are an emerging issue which is not restricted to clinics and the health care sector, but is increasingly affecting the environment [...].Multidrug-resistant bacteria are an emerging issue which is not restricted to clinics and the health care sector, but is increasingly affecting the environment [...].
Journal Article
Accumulation of Pharmaceuticals, Enterococcus, and Resistance Genes in Soils Irrigated with Wastewater for Zero to 100 Years in Central Mexico
by
Broszat, Melanie
,
Willaschek, Elisha
,
Siemens, Jan
in
Accumulation
,
Agricultural Irrigation
,
Agriculture
2012
Irrigation with wastewater releases pharmaceuticals, pathogenic bacteria, and resistance genes, but little is known about the accumulation of these contaminants in the environment when wastewater is applied for decades. We sampled a chronosequence of soils that were variously irrigated with wastewater from zero up to 100 years in the Mezquital Valley, Mexico, and investigated the accumulation of ciprofloxacin, enrofloxacin, sulfamethoxazole, trimethoprim, clarithromycin, carbamazepine, bezafibrate, naproxen, diclofenac, as well as the occurrence of Enterococcus spp., and sul and qnr resistance genes. Total concentrations of ciprofloxacin, sulfamethoxazole, and carbamazepine increased with irrigation duration reaching 95% of their upper limit of 1.4 µg/kg (ciprofloxacin), 4.3 µg/kg (sulfamethoxazole), and 5.4 µg/kg (carbamazepine) in soils irrigated for 19-28 years. Accumulation was soil-type-specific, with largest accumulation rates in Leptosols and no time-trend in Vertisols. Acidic pharmaceuticals (diclofenac, naproxen, bezafibrate) were not retained and thus did not accumulate in soils. We did not detect qnrA genes, but qnrS and qnrB genes were found in two of the irrigated soils. Relative concentrations of sul1 genes in irrigated soils were two orders of magnitude larger (3.15 × 10(-3) ± 0.22 × 10(-3) copies/16S rDNA) than in non-irrigated soils (4.35 × 10(-5)± 1.00 × 10(-5) copies/16S rDNA), while those of sul2 exceeded the ones in non-irrigated soils still by a factor of 22 (6.61 × 10(-4) ± 0.59 × 10(-4) versus 2.99 × 10(-5) ± 0.26 × 10(-5) copies/16S rDNA). Absolute numbers of sul genes continued to increase with prolonging irrigation together with Enterococcus spp. 23S rDNA and total 16S rDNA contents. Increasing total concentrations of antibiotics in soil are not accompanied by increasing relative abundances of resistance genes. Nevertheless, wastewater irrigation enlarges the absolute concentration of resistance genes in soils due to a long-term increase in total microbial biomass.
Journal Article
Transition from irrigation with untreated wastewater to treated wastewater and associated benefits and risks
by
Arredondo-Hernández, René
,
Pulami, Dipen
,
Bierbaum, Gabriele
in
704/172
,
704/242
,
Agricultural wastes
2025
Investments in “Clean water and sanitation” drive a transition from irrigation with untreated to irrigation with treated wastewater. While this transition reduces many health risks, it may decrease crop yields, and soil carbon storage, cause a release of accumulated pollutants from soils, and increase the spread of antibiotic resistance in the environment. A holistic view on multiple SDGs is necessary to maximize benefits and minimize risks of wastewater treatment for irrigation.
Journal Article
Comparison of Antibiotic Resistance, Biofilm Formation and Conjugative Transfer of Staphylococcus and Enterococcus Isolates from International Space Station and Antarctic Research Station Concordia
by
Sakinc, Türkan
,
Prescha, Katrin
,
Schiwon, Katarzyna
in
Air Microbiology
,
Air sampling
,
Antarctic region
2013
The International Space Station (ISS) and the Antarctic Research Station Concordia are confined and isolated habitats in extreme and hostile environments. The human and habitat microflora can alter due to the special environmental conditions resulting in microbial contamination and health risk for the crew. In this study, 29 isolates from the ISS and 55 from the Antarctic Research Station Concordia belonging to the genera Staphylococcus and Enterococcus were investigated. Resistance to one or more antibiotics was detected in 75.8 % of the ISS and in 43.6 % of the Concordia strains. The corresponding resistance genes were identified by polymerase chain reaction in 86 % of the resistant ISS strains and in 18.2 % of the resistant Concordia strains. Plasmids are present in 86.2 % of the ISS and in 78.2 % of the Concordia strains. Eight Enterococcus faecalis strains (ISS) harbor plasmids of about 130 kb. Relaxase and/or transfer genes encoded on plasmids from gram-positive bacteria like pIP501, pRE25, pSK41, pGO1 and pT181 were detected in 86.2 % of the ISS and in 52.7 % of the Concordia strains. Most pSK41-homologous transfer genes were detected in ISS isolates belonging to coagulase-negative staphylococci. We demonstrated through mating experiments that Staphylococcus haemolyticus F2 (ISS) and the Concordia strain Staphylococcus hominis subsp. hominis G2 can transfer resistance genes to E. faecalis and Staphylococcus aureus, respectively. Biofilm formation was observed in 83 % of the ISS and in 92.7 % of the Concordia strains. In conclusion, the ISS isolates were shown to encode more resistance genes and possess a higher gene transfer capacity due to the presence of three vir signature genes, virB1, virB4 and virD4 than the Concordia isolates.
Journal Article
A Novel Role for D-Alanylation of Lipoteichoic Acid of Enterococcus faecalis in Urinary Tract Infection
2014
Enterococci are the third most common cause of healthcare-associated infections, which include urinary tract infections, bacteremia and endocarditis. Cell-surface structures such as lipoteichoic acid (LTA) have been poorly examined in E. faecalis, especially with respect to urinary tract infections (UTIs). The dlt operon is responsible for the D-alanylation of LTA and includes the gene dltA, which encodes the D-alanyl carrier protein ligase (Dcl). The involvement of LTA in UTI infection by E. faecalis has not been studied so far. Here, we examined the role of teichoic acid alanylation in the adhesion of enterococci to uroepithelial cells.
In a mouse model of urinary tract infection, we showed that E. faecalis 12030ΔdltA mutant colonizes uroepithelial surfaces more efficiently than wild type bacteria. We also demonstrated that this mutant adhered four fold better to human bladder carcinoma cell line T24 compared to the wild type strain. Bacterial adherence could be significantly inhibited by purified lipoteichoic acid (LTA) and inhibition was specific.
In contrast to bacteraemia model and adherence to colon surfaces, E. faecalis 12030ΔdltA mutant colonized uroepithelial surfaces more efficiently than wild-type bacteria. In the case of the uroepithelial surface the adherence to specific host cells could be prevented by purified LTA. Our results therefore suggest a novel function of alanylation of LTA in E. faecalis.
Journal Article
Multi-resistant biofilm-forming pathogens on the International Space Station
2019
The International Space Station (ISS) is a confined and closed habitat with unique conditions such as cosmic radiation, and microgravity. These conditions have a strong effect on the human and spacecraft microflora. They can affect the immune response of the crew-members, thus posing a threat to their health. Microbial diversity and abundance of microorganisms from surfaces, air filters and air samples on the ISS have been studied. Enterobacteriaceae, Bacillus spp., Propionibacterium spp., Corynebacterium spp., and Staphylococcus spp. were among the most frequently isolated bacteria. Microbial growth, biofilm formation, stress response, and pathogenicity are affected by microgravity. Increased resistance to antibiotics in bacteria isolated from the ISS has often been reported. Enterococcus faecalis and Staphylococcus spp. isolates from the ISS have been shown to harbor plasmid-encoded transfer genes. These genes facilitate the dissemination of antibiotic resistances. These features of ISS-pathogens call for novel approaches including highly effective antimicrobials which can be easily used on the ISS. A promising material is the antimicrobial surface coating AGXX®, a self-recycling material consisting of two noble metals. It drastically reduced microbial growth of multi-resistant human pathogens, such as staphylococci and enterococci. Further novel approaches include the application of cold atmospheric plasma for the sterilization of spacecrafts.
Journal Article
Fate of Horizontal-Gene-Transfer Markers and Beta-Lactamase Genes during Thermophilic Composting of Human Excreta
by
Feyen, Lara
,
Werner, Katharina A.
,
Brüggemann, Nicolas
in
Agricultural wastes
,
Amides
,
antibiotic resistance
2023
Thermophilic composting is a suitable treatment for the recycling of organic wastes for agriculture. However, using human excreta as feedstock for composting raises concerns about antibiotic resistances. We analyzed samples from the start and end of a thermophilic composting trial of human excreta, together with green cuttings and straw, with and without biochar. Beta-lactamase genes blaCTX-M, blaIMP, and blaTEM conferring resistance to broad-spectrum beta-lactam antibiotics, as well as horizontal gene transfer marker genes, intI1 and korB, were quantified using qPCR. We found low concentrations of the beta-lactamase genes in all samples, with non-significant mean decreases in blaCTX-M and blaTEM copy numbers and a mean increase in blaIMP copy numbers. The decrease in both intI1 and korB genes from start to end of composting indicated that thermophilic composting can decrease the horizontal spread of resistance genes. Thus, thermophilic composting can be a suitable treatment for the recycling of human excreta.
Journal Article
Conjugation Operons in Gram-Positive Bacteria with and without Antitermination Systems
by
Meijer, Wilfried J. J.
,
Grohmann, Elisabeth
,
Michaelis, Claudia
in
antibiotic resistance
,
Antibiotics
,
antitermination
2022
Genes involved in the same cellular process are often clustered together in an operon whose expression is controlled by an upstream promoter. Generally, the activity of the promoter is strictly controlled. However, spurious transcription undermines this strict regulation, particularly affecting large operons. The negative effects of spurious transcription can be mitigated by the presence of multiple terminators inside the operon, in combination with an antitermination system. Antitermination systems modify the transcription elongation complexes and enable them to bypass terminators. Bacterial conjugation is the process by which a conjugative DNA element is transferred from a donor to a recipient cell. Conjugation involves many genes that are mostly organized in one or a few large operons. It has recently been shown that many conjugation operons present on plasmids replicating in Gram-positive bacteria possess a bipartite antitermination system that allows not only many terminators inside the conjugation operon to be bypassed, but also the differential expression of a subset of genes. Here, we show that some conjugation operons on plasmids belonging to the Inc18 family of Gram-positive broad host-range plasmids do not possess an antitermination system, suggesting that the absence of an antitermination system may have advantages. The possible (dis)advantages of conjugation operons possessing (or not) an antitermination system are discussed.
Journal Article