Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
208 result(s) for "Groschup, Martin"
Sort by:
Susceptibility of Raccoon Dogs for Experimental SARS-CoV-2 Infection
Raccoon dogs might have been intermediate hosts for severe acute respiratory syndrome-associated coronavirus in 2002-2004. We demonstrated susceptibility of raccoon dogs to severe acute respiratory syndrome coronavirus 2 infection and transmission to in-contact animals. Infected animals had no signs of illness. Virus replication and tissue lesions occurred in the nasal conchae.
Indirect ELISA based on Hendra and Nipah virus proteins for the detection of henipavirus specific antibodies in pigs
Hendra virus (HeV) and Nipah virus (NiV) belong to the genus Henipavirus in the family Paramyxoviridae. Henipavirus infections were first reported in the 1990's causing severe and often fatal outbreaks in domestic animals and humans in Southeast Asia and Australia. NiV infections were observed in humans in Bangladesh, India and in the first outbreak in Malaysia, where pigs were also infected. HeV infections occurred in horses in the North-Eastern regions of Australia, with singular transmission events to humans. Bats of the genus Pteropus have been identified as the reservoir hosts for henipaviruses. Molecular and serological indications for the presence of henipa-like viruses in African fruit bats, pigs and humans have been published recently. In our study, truncated forms of HeV and NiV attachment (G) proteins as well as the full-length NiV nucleocapsid (N) protein were expressed using different expression systems. Based on these recombinant proteins, Enzyme-linked Immunosorbent Assays (ELISA) were developed for the detection of HeV or NiV specific antibodies in porcine serum samples. We used the NiV N ELISA for initial serum screening considering the general reactivity against henipaviruses. The G protein based ELISAs enabled the differentiation between HeV and NiV infections, since as expected, the sera displayed higher reactivity with the respective homologous antigens. In the future, these assays will present valuable tools for serosurveillance of swine and possibly other livestock or wildlife species in affected areas. Such studies will help assessing the potential risk for human and animal health worldwide by elucidating the distribution of henipaviruses.
Geographic Disparities in Domestic Pig Population Exposure to Ebola Viruses, Guinea, 2017–2019
Although pigs are naturally susceptible to Reston virus and experimentally to Ebola virus (EBOV), their role in Orthoebolavirus ecology remains unknown. We tested 888 serum samples collected from pigs in Guinea during 2017-2019 (between the 2013-16 epidemic and its resurgence in 2021) by indirect ELISA against the EBOV nucleoprotein. We identified 2 hotspots of possible pig exposure by IgG titer levels: the northern coast had 48.7% of positive serum samples (37/76), and Forest Guinea, bordering Sierra Leone and Liberia, where the virus emerged and reemerged, had 50% of positive serum samples (98/196). The multitarget Luminex approach confirms ELISA results against Ebola nucleoprotein and highlights cross-reactivities to glycoprotein of EBOV, Reston virus, and Bundibugyo virus. Those results are consistent with previous observations of the circulation of Orthoebolavirus species in pig farming regions in Sierra Leone and Ghana, suggesting potential risk for Ebola virus disease in humans, especially in Forest Guinea.
Evidence for West Nile Virus and Usutu Virus Infections in Wild and Resident Birds in Germany, 2017 and 2018
Wild birds play an important role as reservoir hosts and vectors for zoonotic arboviruses and foster their spread. Usutu virus (USUV) has been circulating endemically in Germany since 2011, while West Nile virus (WNV) was first diagnosed in several bird species and horses in 2018. In 2017 and 2018, we screened 1709 live wild and zoo birds with real-time polymerase chain reaction and serological assays. Moreover, organ samples from bird carcasses submitted in 2017 were investigated. Overall, 57 blood samples of the live birds (2017 and 2018), and 100 organ samples of dead birds (2017) were positive for USUV-RNA, while no WNV-RNA-positive sample was found. Phylogenetic analysis revealed the first detection of USUV lineage Europe 2 in Germany and the spread of USUV lineages Europe 3 and Africa 3 towards Northern Germany. USUV antibody prevalence rates were high in Eastern Germany in both years. On the contrary, in Northern Germany, high seroprevalence rates were first detected in 2018, with the first emergence of USUV in this region. Interestingly, high WNV-specific neutralizing antibody titers were observed in resident and short-distance migratory birds in Eastern Germany in 2018, indicating the first signs of a local WNV circulation.
Serological evidence of tick-borne Crimean-Congo haemorrhagic fever and Dugbe orthonairovirus infections in cattle in Kwara State in northern Nigeria indicate independent endemics
Crimean-Congo haemorrhagic fever orthonairovirus (CCHFV) and Dugbe orthonairovirus (DUGV) are zoonotic viruses transmitted by ticks. Whereas CCHFV has caused numerous human cases, DUGV, although less reported, shares ticks and ruminants as hosts. Since its first discovery in Nigeria in 1964, there has been no detailed sero-epidemiological investigation on DUGV in sub-Saharan Africa. This study is aimed at assessing the current seroprevalence and associated risk factors of CCHFV and DUGV infections in Nigerian cattle. Using a cross-sectional design with random sampling method, blood samples were collected from 877 cattle on pastoralist farms and at abattoirs in Kwara State, North-Central Nigeria. CCHFV IgG antibodies were detected in extracted sera using three panels of in-house indirect enzyme-linked immunosorbent assay (ELISA) based on bacteria-expressed recombinant nucleoprotein (rNP), the cattle-adapted VectoCrimean ELISA and the ID Screen CCHF double antigen multi-species ELISA, while DUGV IgG antibodies were detected using in-house indirect ELISA with bacteria-expressed rNP, indirect immunofluorescence assay and micro-Virus Neutralization test. Overall seroprevalence rates of 71.9% (631/877) and 52.8% (451/854) were obtained for CCHFV and DUGV, respectively. It was observed that 37.9% (314/829) of the cattle were co-exposed to both CCHFV and DUGV while 34.5% (286/829), 14.8% (123/829) and 12.8% (106/829) were exposed to single infections with CCHFV, DUGV or none of the two viruses, respectively. Multivariate analysis showed that only location, sex, age and tick infestation score were the risk factors that significantly affected CCHFV seroprevalence in cattle, while DUGV seroprevalence was significantly influenced by month of the year, location, cattle breed and sex (p<0.05). This is the first comprehensive sero-epidemiological surveillance for DUGV in sub-Saharan Africa. Our findings reveal widely distributed independent CCHFV and DUGV infections in cattle in Kwara State, Nigeria.
Curing Cats with Feline Infectious Peritonitis with an Oral Multi-Component Drug Containing GS-441524
Feline infectious peritonitis (FIP) caused by feline coronavirus (FCoV) is a common dis-ease in cats, fatal if untreated, and no effective treatment is currently legally available. The aim of this study was to evaluate efficacy and toxicity of the multi-component drug Xraphconn® in vitro and as oral treatment in cats with spontaneous FIP by examining survival rate, development of clinical and laboratory parameters, viral loads, anti-FCoV antibodies, and adverse effects. Mass spectrometry and nuclear magnetic resonance identified GS-441524 as an active component of Xraphconn®. Eighteen cats with FIP were prospectively followed up while being treated orally for 84 days. Values of key parameters on each examination day were compared to values before treatment initiation using linear mixed-effect models. Xraphconn® displayed high virucidal activity in cell culture. All cats recovered with dramatic improvement of clinical and laboratory parameters and massive reduction in viral loads within the first few days of treatment without serious adverse effects. Oral treatment with Xraphconn® containing GS-441524 was highly effective for FIP without causing serious adverse effects. This drug is an excellent option for the oral treatment of FIP and should be trialed as potential effective treatment option for other severe coronavirus-associated diseases across species.
Epizootic Emergence of Usutu Virus in Wild and Captive Birds in Germany
This study aimed to identify the causative agent of mass mortality in wild and captive birds in southwest Germany and to gather insights into the phylogenetic relationship and spatial distribution of the pathogen. Since June 2011, 223 dead birds were collected and tested for the presence of viral pathogens. Usutu virus (USUV) RNA was detected by real-time RT-PCR in 86 birds representing 6 species. The virus was isolated in cell culture from the heart of 18 Blackbirds (Turdus merula). USUV-specific antigen was demonstrated by immunohistochemistry in brain, heart, liver, and lung of infected Blackbirds. The complete polyprotein coding sequence was obtained by deep sequencing of liver and spleen samples of a dead Blackbird from Mannheim (BH65/11-02-03). Phylogenetic analysis of the German USUV strain BH65/11-02-03 revealed a close relationship with strain Vienna that caused mass mortality among birds in Austria in 2001. Wild birds from lowland river valleys in southwest Germany were mainly affected by USUV, but also birds kept in aviaries. Our data suggest that after the initial detection of USUV in German mosquitoes in 2010, the virus spread in 2011 and caused epizootics among wild and captive birds in southwest Germany. The data also indicate an increased risk of USUV infections in humans in Germany.
Molecular detection of dugbe orthonairovirus in cattle and their infesting ticks (Amblyomma and Rhipicephalus (Boophilus)) in Nigeria
Dugbe orthonairovirus (DUGV), a tick-borne zoonotic arbovirus, was first isolated in 1964 in Nigeria. For over four decades, no active surveillance was conducted to monitor the spread and genetic variation of DUGV. This study detected and genetically characterized DUGV circulating in cattle and their infesting ticks ( Amblyomma and Rhipicephalus ( Boophilus )) in Kwara State, North-Central Nigeria. Blood and or ticks were collected from 1051 cattle at 31 sampling sites (abattoirs and farms) across 10 local government areas of the State. DUGV detection was carried out by RT-qPCR, and positive samples sequenced and phylogenetically analysed. A total of 11824 ticks, mostly A . variegatum (36.0%) and R . ( B .) microplus (63.9%), were obtained with mean tick burden of 12 ticks/cattle. Thirty-four (32 A . variegatum and two R . ( B .) microplus ) of 4644 examined ticks were DUGV-positive, whereas all of the cattle sera tested negative for DUGV genome. Whole genome sequence (S, M and L segments) and phylogenetic analyses indicate that the positive samples shared up to 99.88% nucleotide identity with and clustered around the Nigerian DUGV prototype strain IbAr 1792. Hence, DUGV with high similarity to the previously characterised strain has been detected in Nigeria. To our knowledge, this is the first report of DUGV in North-Central Nigeria and the most recent information after its last surveillance in 1974.
Hepatitis E Seroprevalence and Detection of Genotype 3 Strains in Domestic Pigs from Sierra Leone Collected in 2016 and 2017
Hepatitis E virus (HEV) is the main cause of acute hepatitis in humans worldwide and is responsible for a large number of outbreaks especially in Africa. Human infections are mainly caused by genotypes 1 and 2 of the genus Paslahepevirus, which are exclusively associated with humans. In contrast, viruses of genotypes 3 and 4 are zoonotic and have their main reservoir in domestic and wild pigs, from which they can be transmitted to humans primarily through the consumption of meat products. Both genotypes 3 and 4 are widespread in Europe, Asia, and North America and lead to sporadic cases of hepatitis E. However, there is little information available on the prevalence of these genotypes and possible transmission routes from animal reservoirs to humans in African countries. We therefore analysed 1086 pig sera collected in 2016/2017 in four districts in Sierra Leone for antibodies against HEV using a newly designed in-house ELISA. In addition, the samples were also analysed for HEV RNA by quantitative real-time RT-PCR. The overall seroprevalence in Sierra Leone was low with only 44 positive sera and a prevalence of 4.0%. Two serum pools were RT-PCR-positive and recovered partial sequences clustered into the genotype 3 (HEV-3) of the order Paslahepevirus, species Paslahepevirus balayani. The results are the first evidence of HEV-3 infection in pigs from Sierra Leone and demonstrate a low circulation of the virus in these animals to date. Further studies should include an examination of humans, especially those with close contact with pigs and porcine products, as well as environmental sampling to evaluate public health effects within the framework of a One Health approach.
German Culex pipiens biotype molestus and Culex torrentium are vector-competent for Usutu virus
Background Usutu virus (USUV) is a rapidly spreading zoonotic arbovirus (arthropod-borne virus) and a considerable threat to the global avifauna and in isolated cases to human health. It is maintained in an enzootic cycle involving ornithophilic mosquitoes as vectors and birds as reservoir hosts. Despite massive die-offs in wild bird populations and the detection of severe neurological symptoms in infected humans, little is known about which mosquito species are involved in the propagation of USUV. Methods In the present study, the vector competence of a German (i.e. “Central European”) and a Serbian (i.e. “Southern European”) Culex pipiens biotype molestus laboratory colony was experimentally evaluated. For comparative purposes, Culex torrentium , a frequent species in Northern Europe, and Aedes aegypti , a primarily tropical species, were also tested. Adult female mosquitoes were exposed to bovine blood spiked with USUV Africa 2 and subsequently incubated at 25 °C. After 2 to 3 weeks saliva was collected from each individual mosquito to assess the ability of a mosquito species to transmit USUV. Results Culex pipiens biotype molestus mosquitoes originating from Germany and the Republic of Serbia and Cx. torrentium mosquitoes from Germany proved competent for USUV, as indicated by harboring viable virus in their saliva 21 days post infection . By contrast, Ae. aegypti mosquitoes were relatively refractory to an USUV infection, exhibiting low infection rates and lacking virus in their saliva. Conclusions Consistent with the high prevalences and abundances of Cx. pipiens biotype molestus and Cx. torrentium in Central and Northern Europe, these two species have most likely played a historic role in the spread, maintenance, and introduction of USUV into Germany. Identification of the key USUV vectors enables the establishment and implementation of rigorous entomological surveillance programs and the development of effective, evidence-based vector control interventions. Graphical Abstract