Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
97 result(s) for "Gross, Cornelius T."
Sort by:
Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction
Microglia are highly motile glial cells that are proposed to mediate synaptic pruning during neuronal circuit formation. Disruption of signaling between microglia and neurons leads to an excess of immature synaptic connections, thought to be the result of impaired phagocytosis of synapses by microglia. However, until now the direct phagocytosis of synapses by microglia has not been reported and fundamental questions remain about the precise synaptic structures and phagocytic mechanisms involved. Here we used light sheet fluorescence microscopy to follow microglia–synapse interactions in developing organotypic hippocampal cultures, complemented by a 3D ultrastructural characterization using correlative light and electron microscopy (CLEM). Our findings define a set of dynamic microglia–synapse interactions, including the selective partial phagocytosis, or trogocytosis ( trogo -: nibble), of presynaptic structures and the induction of postsynaptic spine head filopodia by microglia. These findings allow us to propose a mechanism for the facilitatory role of microglia in synaptic circuit remodeling and maturation. Direct visualization of microglia-mediated synapse pruning has been lacking. This study shows direct evidence of microglia-synapse interaction where microglia do not necessarily ‘eat’ post-synaptic structure but ‘nibble’ on pre-synaptic terminals, much akin to trogocytosis by lymphocytes.
High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy
Multiphoton microscopy has become a powerful tool with which to visualize the morphology and function of neural cells and circuits in the intact mammalian brain. However, tissue scattering, optical aberrations and motion artifacts degrade the imaging performance at depth. Here we describe a minimally invasive intravital imaging methodology based on three-photon excitation, indirect adaptive optics (AO) and active electrocardiogram gating to advance deep-tissue imaging. Our modal-based, sensorless AO approach is robust to low signal-to-noise ratios as commonly encountered in deep scattering tissues such as the mouse brain, and permits AO correction over large axial fields of view. We demonstrate near-diffraction-limited imaging of deep cortical spines and (sub)cortical dendrites up to a depth of 1.4 mm (the edge of the mouse CA1 hippocampus). In addition, we show applications to deep-layer calcium imaging of astrocytes, including fibrous astrocytes that reside in the highly scattering corpus callosum.Three-photon microscopy in combination with adaptive optics-based aberration correction and ECG-triggered gating allows high-resolution imaging of neurons and astrocytes up to a depth of 1.4 mm in the mouse brain.
Synaptic Pruning by Microglia Is Necessary for Normal Brain Development
Microglia are highly motile phagocytic cells that infiltrate and take up residence in the developing brain, where they are thought to provide a surveillance and scavenging function. However, although microglia have been shown to engulf and clear damaged cellular debris after brain insult, it remains less clear what role microglia play in the uninjured brain. Here, we show that microglia actively engulf synaptic material and play a major role in synaptic pruning during postnatal development in mice. These findings link microglia surveillance to synaptic maturation and suggest that deficits in microglia function may contribute to synaptic abnormalities seen in some neurodevelopmental disorders.
Mapping Pathological Phenotypes in a Mouse Model of CDKL5 Disorder
Mutations in cyclin-dependent kinase-like 5 (CDKL5) cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG) responses to convulsant treatment, decreased visual evoked responses (VEPs), and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder.
A neural circuit for competing approach and defense underlying prey capture
Predators must frequently balance competing approach and defensive behaviors elicited by a moving and potentially dangerous prey. Several brain circuits supporting predation have recently been localized. However, the mechanisms by which these circuits balance the conflict between approach and defense responses remain unknown. Laboratory mice initially show alternating approach and defense responses toward cockroaches, a natural prey, but with repeated exposure become avid hunters. Here, we used in vivo neural activity recording and cell-type specific manipulations in huntingmale mice to identify neurons in the lateral hypothalamus and periaqueductal gray that encode and control predatory approach and defense behaviors. We found a subset of GABAergic neurons in lateral hypothalamus that specifically encoded hunting behaviors and whose stimulation triggered predation but not feeding. This population projects to the periaqueductal gray, and stimulation of these projections promoted predation. Neurons in periaqueductal gray encoded both approach and defensive behaviors but only initially when the mouse showed high levels of fear of the prey. Our findings allow us to propose that GABAergic neurons in lateral hypothalamus facilitate predation in part by suppressing defensive responses to prey encoded in the periaqueductal gray. Our results reveal a neural circuit mechanism for controlling the balance between conflicting approach and defensive behaviors elicited by the same stimulus.
5-HT1A receptors on mature dentate gyrus granule cells are critical for the antidepressant response
Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants, but the mechanisms by which they influence behavior are only partially resolved. Using a combination of different approaches, the authors demonstrate that serotonin 1A receptors expressed in mature dentate gyrus granule cells are critical mediators of the response to SSRIs. Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants, but the mechanisms by which they influence behavior are only partially resolved. Adult hippocampal neurogenesis is necessary for some of the responses to SSRIs, but it is not known whether mature dentate gyrus granule cells (DG GCs) also contribute. We deleted the serotonin 1A receptor (5HT1AR, a receptor required for the SSRI response) specifically from DG GCs and found that the effects of the SSRI fluoxetine on behavior and the hypothalamic-pituitary-adrenal (HPA) axis were abolished. By contrast, mice lacking 5HT1ARs only in young adult-born GCs (abGCs) showed normal fluoxetine responses. Notably, 5HT1AR-deficient mice engineered to express functional 5HT1ARs only in DG GCs responded to fluoxetine, indicating that 5HT1ARs in DG GCs are sufficient to mediate an antidepressant response. Taken together, these data indicate that both mature DG GCs and young abGCs must be engaged for an antidepressant response.
Dynamic encoding of social threat and spatial context in the hypothalamus
Social aggression and avoidance are defensive behaviors expressed by territorial animals in a manner appropriate to spatial context and experience. The ventromedial hypothalamus controls both social aggression and avoidance, suggesting that it may encode a general internal state of threat modulated by space and experience. Here, we show that neurons in the mouse ventromedial hypothalamus are activated both by the presence of a social threat as well as by a chamber where social defeat previously occurred. Moreover, under conditions where the animal could move freely between a home and defeat chamber, firing activity emerged that predicted the animal’s position, demonstrating the dynamic encoding of spatial context in the hypothalamus. Finally, we found that social defeat induced a functional reorganization of neural activity as optogenetic activation could elicit avoidance after, but not before social defeat. These findings reveal how the hypothalamus dynamically encodes spatial and sensory cues to drive social behaviors.
Induction of flight via midbrain projections to the cuneiform nucleus
The dorsal periaqueductal gray is a midbrain structure implicated in the control of defensive behaviors and the processing of painful stimuli. Electrical stimulation or optogenetic activation of excitatory neurons in dorsal periaqueductal gray results in freezing or flight behavior at low and high intensity, respectively. However, the output structures that mediate these defensive behaviors remain unconfirmed. Here we carried out a targeted classification of neuron types in dorsal periaqueductal gray using multiplex in situ sequencing and then applied cell-type and projection-specific optogenetic stimulation to identify projections from dorsal periaqueductal grey to the cuneiform nucleus that promoted goal-directed flight behavior. These data confirmed that descending outputs from dorsal periaqueductal gray serve as a trigger for directed escape behavior.
Induction of territorial dominance and subordination behaviors in laboratory mice
Territorial behaviors comprise a set of coordinated actions and response patterns found across animal species that promote the exclusive access to resources. House mice are highly territorial with a subset of males consistently attacking and chasing competing males to expel them from their territories and performing urine marking behaviors to signal the extent of their territories. Natural variation in territorial behaviors within a mouse colony leads to the formation of dominance hierarchies in which subordinate males can reside within the territory of a dominant male. While the full repertoire of such territorial behaviors and hierarchies has been extensively studied in wild-derived mice in semi-natural enclosures, so far they have not been established in the smaller enclosures and with the genetically-defined laboratory strains required for the application of neural recording and manipulation methods. Here, we present a protocol to rapidly induce an extensive repertoire of territorial behaviors in pairs of laboratory mice in an enclosure compatible with tethered neurocircuit techniques, including a method for the simultaneous tracking of urine marking behavior in mouse pairs. Using this protocol we describe the emergence of robust dominant-subordinate hierarchies between pairs of CD1 outbred or CD1xB6 F1 hybrid mice, but unexpectedly not in C57BL/6 inbred animals. Our behavioral paradigm opens the door for neurocircuit studies of territorial behaviors and social hierarchy in the laboratory.
Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders
Key Points Brain development is associated with the formation of excessive synapses that have to be removed in a controlled and timely manner to achieve refined mature circuitry. Glial cells, including microglia and astrocytes, are the effectors of synaptic pruning, identifying and eliminating superfluous synapses. Synaptic pruning depends on various molecules, including those controlling glial chemotaxis, target recognition and phagocytosis. Autism spectrum disorders are associated with excessive synapses, autophagy and dysregulated microglial function. Schizophrenia is linked to exaggerated synaptic pruning owing to elevated levels of complement proteins and microglial activation. Epilepsy is thought to arise owing to immature circuitry that was not refined via synaptic pruning. This initial epileptiform activity is followed by microglial activation and upregulation of complement components. During late-stage development, supernumerary synapses are eliminated in a process known as synaptic pruning. Here, Neniskyte and Gross give an overview of synaptic pruning in various parts of the nervous system and describe how differences in synaptic pruning may be associated with neurodevelopmental disorders. The final stage of brain development is associated with the generation and maturation of neuronal synapses. However, the same period is also associated with a peak in synapse elimination — a process known as synaptic pruning — that has been proposed to be crucial for the maturation of remaining synaptic connections. Recent studies have pointed to a key role for glial cells in synaptic pruning in various parts of the nervous system and have identified a set of critical signalling pathways between glia and neurons. At the same time, brain imaging and post-mortem anatomical studies suggest that insufficient or excessive synaptic pruning may underlie several neurodevelopmental disorders, including autism, schizophrenia and epilepsy. Here, we review current data on the cellular, physiological and molecular mechanisms of glial-cell-dependent synaptic pruning and outline their potential contribution to neurodevelopmental disorders.