Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
24 result(s) for "Grubov, Vadim"
Sort by:
Age-related slowing down in the motor initiation in elderly adults
Age-related changes in the human brain functioning crucially affect the motor system, causing increased reaction time, low ability to control and execute movements, difficulties in learning new motor skills. The lifestyle and lowered daily activity of elderly adults, along with the deficit of motor and cognitive brain functions, might lead to the developed ambidexterity, i.e., the loss of dominant limb advances. Despite the broad knowledge about the changes in cortical activity directly related to the motor execution, less is known about age-related differences in the motor initiation phase. We hypothesize that the latter strongly influences the behavioral characteristics, such as reaction time, the accuracy of motor performance, etc. Here, we compare the neuronal processes underlying the motor initiation phase preceding fine motor task execution between elderly and young subjects. Based on the results of the whole-scalp sensor-level electroencephalography (EEG) analysis, we demonstrate that the age-related slowing down in the motor initiation before the dominant hand movements is accompanied by the increased theta activation within sensorimotor area and reconfiguration of the theta-band functional connectivity in elderly adults.
Visual perception affected by motivation and alertness controlled by a noninvasive brain-computer interface
The influence of motivation and alertness on brain activity associated with visual perception was studied experimentally using the Necker cube, which ambiguity was controlled by the contrast of its ribs. The wavelet analysis of recorded multichannel electroencephalograms (EEG) allowed us to distinguish two different scenarios while the brain processed the ambiguous stimulus. The first scenario is characterized by a particular destruction of alpha rhythm (8-12 Hz) with a simultaneous increase in beta-wave activity (20-30 Hz), whereas in the second scenario, the beta rhythm is not well pronounced while the alpha-wave energy remains unchanged. The experiments were carried out with a group of financially motivated subjects and another group of unpaid volunteers. It was found that the first scenario occurred mainly in the motivated group. This can be explained by the increased alertness of the motivated subjects. The prevalence of the first scenario was also observed in a group of subjects to whom images with higher ambiguity were presented. We believe that the revealed scenarios can occur not only during the perception of bistable images, but also in other perceptual tasks requiring decision making. The obtained results may have important applications for monitoring and controlling human alertness in situations which need substantial attention. On the base of the obtained results we built a brain-computer interface to estimate and control the degree of alertness in real time.
Transcranial Magnetic Stimulation of the Dorsolateral Prefrontal Cortex Increases Posterior Theta Rhythm and Reduces Latency of Motor Imagery
Experiments show activation of the left dorsolateral prefrontal cortex (DLPFC) in motor imagery (MI) tasks, but its functional role requires further investigation. Here, we address this issue by applying repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC and evaluating its effect on brain activity and the latency of MI response. This is a randomized, sham-controlled EEG study. Participants were randomly assigned to receive sham (15 subjects) or real high-frequency rTMS (15 subjects). We performed EEG sensor-level, source-level, and connectivity analyses to evaluate the rTMS effects. We revealed that excitatory stimulation of the left DLPFC increases theta-band power in the right precuneus (PrecuneusR) via the functional connectivity between them. The precuneus theta-band power negatively correlates with the latency of the MI response, so the rTMS speeds up the responses in 50% of participants. We suppose that posterior theta-band power reflects attention modulation of sensory processing; therefore, high power may indicate attentive processing and cause faster responses.
Neural Interactions in a Spatially-Distributed Cortical Network During Perceptual Decision-Making
Behavioral experiments evidence that attention is not maintained at a constant level, but fluctuates in time. Recent studies associate such fluctuations with dynamics of attention-related cortical networks, however the exact mechanism remains unclear. To address this issue, we consider functional neuronal interactions during the accomplishment of a reaction time (RT) task which requires sustained attention. The participants are subjected to a binary classification of a large number of presented ambiguous visual stimuli with different degree of ambiguity. Generally, high ambiguity causes high RT and vice versa. However, we demonstrate that RT fluctuates even when the stimulus ambiguity remains unchanged. The analysis of neuronal activity reveals that the subject's behavioral response is preceded by the formation of a distributed functional network in the $\\beta$-frequency band. This network is characterized by high connectivity in frontal cortex and supposed to subserve a decision-making process. We show that neither the network structure nor the duration of its formation depend on RT and stimulus ambiguity. In turn, RT is related to the moment of time when the $\\beta$-band functional network emerges. We hypothesize that RT is affected by the processes preceding the decision-making stage, e.g. encoding visual sensory information and extracting decision-relevant features from raw sensory information.
Extreme value theory inspires explainable machine learning approach for seizure detection
Epilepsy is one of the brightest manifestations of extreme behavior in living systems. Extreme epileptic events are seizures, that arise suddenly and unpredictably. Usually, treatment strategies start by analyzing brain activity during the seizures revealing their type and onset mechanisms. This approach requires collecting data for a representative number of events which is only possible during the continuous EEG monitoring over several days. A big part of the further analysis is searching for seizures on these recordings. An experienced medical specialist spends hours checking the data of a single patient and needs assistance from the automative systems for seizure detection. Machine learning methods typically address this issue in a supervised fashion and exhibit a lack of generalization. The extreme value theory allows addressing this issue with the unsupervised machine learning methods of outlier detection. Here, we make the first step toward using this approach for the seizure detection. Based on our recent work, we specified the EEG features showing extreme behavior during seizures and loaded them to the one-class SVM, a popular outlier detection algorithm. Testing the proposed approach on 83 patients, we reported 77% sensitivity and 12% precision. In 60 patients, sensitivity was 100%. In the rest 23 subjects, we observed deviations from the extreme behavior. The one-class SVM used a single subject’s data for training; therefore, it was stable against between-subject variability. Our results demonstrate an effective convergence between the extreme value theory, a physical concept, and the outlier detection algorithms, a machine learning concept, toward solving the meaningful task of medicine.
Statistical Properties and Predictability of Extreme Epileptic Events
The use of extreme events theory for the analysis of spontaneous epileptic brain activity is a relevant multidisciplinary problem. It allows deeper understanding of pathological brain functioning and unraveling mechanisms underlying the epileptic seizure emergence along with its predictability. The latter is a desired goal in epileptology which might open the way for new therapies to control and prevent epileptic attacks. With this goal in mind, we applied the extreme event theory for studying statistical properties of electroencephalographic (EEG) recordings of WAG/Rij rats with genetic predisposition to absence epilepsy. Our approach allowed us to reveal extreme events inherent in this pathological spiking activity, highly pronounced in a particular frequency range. The return interval analysis showed that the epileptic seizures exhibit a highly-structural behavior during the active phase of the spiking activity. Obtained results evidenced a possibility for early (up to 7 s) prediction of epileptic seizures based on consideration of EEG statistical properties.
Psychophysiological Parameters Predict the Performance of Naive Subjects in Sport Shooting Training
In this study, we investigated the neural and behavioral mechanisms associated with precision visual-motor control during the learning of sport shooting. We developed an experimental paradigm adapted for naïve individuals and a multisensory experimental paradigm. We showed that in the proposed experimental paradigms, subjects trained well and significantly increased their accuracy. We also identified several psycho-physiological parameters that were associated with shooting outcomes, including EEG biomarkers. In particular, we observed an increase in head-averaged delta and right temporal alpha EEG power before missing shots, as well as a negative correlation between theta-band energies in the frontal and central brain regions and shooting success. Our findings suggest that the multimodal analysis approach has the potential to be highly informative in studying the complex processes involved in visual-motor control learning and may be useful for optimizing training processes.
Monitoring the Cortical Activity of Children and Adults during Cognitive Task Completion
In this paper, we used an EEG system to monitor and analyze the cortical activity of children and adults at a sensor level during cognitive tasks in the form of a Schulte table. This complex cognitive task simultaneously involves several cognitive processes and systems: visual search, working memory, and mental arithmetic. We revealed that adults found numbers on average two times faster than children in the beginning. However, this difference diminished at the end of table completion to 1.8 times. In children, the EEG analysis revealed high parietal alpha-band power at the end of the task. This indicates the shift from procedural strategy to less demanding fact-retrieval. In adults, the frontal beta-band power increased at the end of the task. It reflects enhanced reliance on the top–down mechanisms, cognitive control, or attentional modulation rather than a change in arithmetic strategy. Finally, the alpha-band power of adults exceeded one of the children in the left hemisphere, providing potential evidence for the fact-retrieval strategy. Since the completion of the Schulte table involves a whole set of elementary cognitive functions, the obtained results were essential for developing passive brain–computer interfaces for monitoring and adjusting a human state in the process of learning and solving cognitive tasks of various types.
Evaluation of Unsupervised Anomaly Detection Techniques in Labelling Epileptic Seizures on Human EEG
Automated labelling of epileptic seizures on electroencephalograms is an essential interdisciplinary task of diagnostics. Traditional machine learning approaches operate in a supervised fashion requiring complex pre-processing procedures that are usually labour intensive and time-consuming. The biggest issue with the analysis of electroencephalograms is the artefacts caused by head movements, eye blinks, and other non-physiological reasons. Similarly to epileptic seizures, artefacts produce rare high-amplitude spikes on electroencephalograms, complicating their separability. We suggest that artefacts and seizures are rare events; therefore, separating them from the rest data seriously reduces information for further processing. Based on the occasional nature of these events and their distinctive pattern, we propose using anomaly detection algorithms for their detection. These algorithms are unsupervised and require minimal pre-processing. In this work, we test the possibility of an anomaly (or outlier) detection algorithm to detect seizures. We compared the state-of-the-art outlier detection algorithms and showed how their performance varied depending on input data. Our results evidence that outlier detection methods can detect all seizures reaching 100% recall, while their precision barely exceeds 30%. However, the small number of seizures means that the algorithm outputs a set of few events that could be quickly classified by an expert. Thus, we believe that outlier detection algorithms could be used for the rapid analysis of electroencephalograms to save the time and effort of experts.
Perceptual Integration Compensates for Attention Deficit in Elderly during Repetitive Auditory-Based Sensorimotor Task
Sensorimotor integration (SI) brain functions that are vital for everyday life tend to decline in advanced age. At the same time, elderly people preserve a moderate level of neuroplasticity, which allows the brain’s functionality to be maintained and slows down the process of neuronal degradation. Hence, it is important to understand which aspects of SI are modifiable in healthy old age. The current study focuses on an auditory-based SI task and explores: (i) if the repetition of such a task can modify neural activity associated with SI, and (ii) if this effect is different in young and healthy old age. A group of healthy older subjects and young controls underwent an assessment of the whole-brain electroencephalography (EEG) while repetitively executing a motor task cued by the auditory signal. Using EEG spectral power and functional connectivity analyses, we observed a differential age-related modulation of theta activity throughout the repetition of the SI task. Growth of the anterior stimulus-related theta oscillations accompanied by enhanced right-lateralized frontotemporal phase-locking was found in elderly adults. Their young counterparts demonstrated a progressive increase in prestimulus occipital theta power. Our results suggest that the short-term repetition of the auditory-based SI task modulates sensory processing in the elderly. Older participants most likely progressively improve perceptual integration rather than attention-driven processing compared to their younger counterparts.