Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
233
result(s) for
"Grumezescu, Alexandru Mihai"
Sort by:
New Insights of Scaffolds Based on Hydrogels in Tissue Engineering
by
Neacsu, Ionela Andreea
,
Grumezescu, Alexandru-Mihai
,
Radulescu, Denisa-Maria
in
Biocompatibility
,
Biodegradability
,
Biodegradation
2022
In recent years, biomaterials development and characterization for new applications in regenerative medicine or controlled release represent one of the biggest challenges. Tissue engineering is one of the most intensively studied domain where hydrogels are considered optimum applications in the biomedical field. The delicate nature of hydrogels and their low mechanical strength limit their exploitation in tissue engineering. Hence, developing new, stronger, and more stable hydrogels with increased biocompatibility, is essential. However, both natural and synthetic polymers possess many limitations. Hydrogels based on natural polymers offer particularly high biocompatibility and biodegradability, low immunogenicity, excellent cytocompatibility, variable, and controllable solubility. At the same time, they have poor mechanical properties, high production costs, and low reproducibility. Synthetic polymers come to their aid through superior mechanical strength, high reproducibility, reduced costs, and the ability to regulate their composition to improve processes such as hydrolysis or biodegradation over variable periods. The development of hydrogels based on mixtures of synthetic and natural polymers can lead to the optimization of their properties to obtain ideal scaffolds. Also, incorporating different nanoparticles can improve the hydrogel’s stability and obtain several biological effects. In this regard, essential oils and drug molecules facilitate the desired biological effect or even produce a synergistic effect. This study’s main purpose is to establish the main properties needed to develop sustainable polymeric scaffolds. These scaffolds can be applied in tissue engineering to improve the tissue regeneration process without producing other side effects to the environment.
Journal Article
Green Synthesis of Metal and Metal Oxide Nanoparticles: A Review of the Principles and Biomedical Applications
by
Ficai, Denisa
,
Grumezescu, Alexandru-Mihai
,
Surdu, Vasile-Adrian
in
Antibiotics
,
Antimicrobial agents
,
Biocompatibility
2023
In recent years, interest in nanotechnology has increased exponentially due to enhanced progress and technological innovation. In tissue engineering, the development of metallic nanoparticles has been amplified, especially due to their antibacterial properties. Another important characteristic of metal NPs is that they enable high control over the features of the developed scaffolds (optimizing their mechanical strength and offering the controlled release of bioactive agents). Currently, the main concern related to the method of synthesis of metal oxide NPs is the environmental impact. The physical and chemical synthesis uses toxic agents that could generate hazards or exert carcinogenicity/environmental toxicity. Therefore, a greener, cleaner, and more reliable approach is needed. Green synthetic has come as a solution to counter the aforementioned limitations. Nowadays, green synthesis is preferred because it leads to the prevention/minimization of waste, the reduction of derivatives/pollution, and the use of non-toxic (safer) solvents. This method not only uses biomass sources as reducing agents for metal salts. The biomolecules also cover the synthesized NPs or act as in situ capping and reducing agents. Further, their involvement in the formation process reduces toxicity, prevents nanoparticle agglomeration, and improves the antimicrobial activity of the nanomaterial, leading to a possible synergistic effect. This study aims to provide a comprehensive review of the green synthesis of metal and metal oxide nanoparticles, from the synthesis routes, selected solvents, and parameters to their latest application in the biomedical field.
Journal Article
Novel Trends into the Development of Natural Hydroxyapatite-Based Polymeric Composites for Bone Tissue Engineering
by
Neacsu, Ionela Andreea
,
Grumezescu, Alexandru-Mihai
,
Andronescu, Ecaterina
in
Antiinfectives and antibacterials
,
Biocompatibility
,
Biological activity
2022
In recent years, the number of people needing bone replacements for the treatment of defects caused by chronic diseases or accidents has continuously increased. To solve these problems, tissue engineering has gained significant attention in the biomedical field, by focusing on the development of suitable materials that improve osseointegration and biologic activity. In this direction, the development of an ideal material that provides good osseointegration, increased antimicrobial activity and preserves good mechanical properties has been the main challenge. Currently, bone tissue engineering focuses on the development of materials with tailorable properties, by combining polymers and ceramics to meet the necessary complex requirements. This study presents the main polymers applied in tissue engineering, considering their advantages and drawbacks. Considering the potential disadvantages of polymers, improving the applicability of the material and the combination with a ceramic material is the optimum pathway to increase the mechanical stability and mineralization process. Thus, ceramic materials obtained from natural sources (e.g., hydroxyapatite) are preferred to improve bioactivity, due to their similarity to the native hydroxyapatite found in the composition of human bone.
Journal Article
Treatment Strategies for Infected Wounds
by
Negut, Irina
,
Grumezescu, Valentina
,
Grumezescu, Alexandru Mihai
in
Animals
,
Anti-Infective Agents - pharmacology
,
Anti-Infective Agents - therapeutic use
2018
The treatment of skin wounds is a key research domain owing to the important functional and aesthetic role of this tissue. When the skin is impaired, bacteria can soon infiltrate into underlying tissues which can lead to life-threatening infections. Consequently, effective treatments are necessary to deal with such pathological conditions. Recently, wound dressings loaded with antimicrobial agents have emerged as viable options to reduce wound bacterial colonization and infection, in order to improve the healing process. In this paper, we present an overview of the most prominent antibiotic-embedded wound dressings, as well as the limitations of their use. A promising, but still an underrated group of potential antibacterial agents that can be integrated into wound dressings are natural products, especially essential oils. Some of the most commonly used essential oils against multidrug-resistant microorganisms, such as tea tree, St. John’s Wort, lavender and oregano, together with their incorporation into wound dressings are presented. In addition, another natural product that exhibits encouraging antibacterial activity is honey. We highlight recent results of several studies carried out by researchers from different regions of the world on wound dressings impregnated with honey, with a special emphasis on Manuka honey. Finally, we highlight recent advances in using nanoparticles as platforms to increase the effect of pharmaceutical formulations aimed at wound healing. Silver, gold, and zinc nanoparticles alone or functionalized with diverse antimicrobial compounds have been integrated into wound dressings and demonstrated therapeutic effects on wounds.
Journal Article
New 3D Spiral Microfluidic Platform Tested for Fe3O4@SA Nanoparticle Synthesis
by
Niculescu, Adelina-Gabriela
,
Tudorache (Trifa), Dana-Ionela
,
Mihaiescu, Dan-Eduard
in
3D microfluidics
,
Acids
,
Biocompatibility
2025
Due to the need for reproducible, scalable, and environmentally friendly nanomaterial synthesis methods, an increasing amount of scientific interest revolves around microfluidic technologies. In this context, the present paper proposes a new three-dimensional (3D) spiral microfluidic platform designed and tested for the simultaneous synthesis and surface functionalization of magnetite (Fe3O4) nanoparticles with salicylic acid (SA). The microreactor was fabricated from overlaid polymethylmethacrylate (PMMA) sheets and assembled into a compact, reusable chip architecture, allowing continuous reagent mixing and enhanced hydrodynamic control. The performed physicochemical analyses confirmed that on-chip synthesized Fe3O4@SA NPs exhibit crystallinity, a uniform spherical morphology, a narrow size distribution, excellent colloidal stability, and successful surface functionalization. In vitro cytotoxicity assays using MRC-5 lung fibroblasts and HaCaT keratinocytes revealed a concentration-dependent response, identifying a safe dose range below 610 µg/mL. The integrated design, efficient synthesis, and favorable biocompatibility profile position this 3D microfluidic platform as a promising tool for scalable nanomaterial production in biomedical and environmental applications.
Journal Article
Microelectromechanical Systems (MEMS) for Biomedical Applications
2022
The significant advancements within the electronics miniaturization field have shifted the scientific interest towards a new class of precision devices, namely microelectromechanical systems (MEMS). Specifically, MEMS refers to microscaled precision devices generally produced through micromachining techniques that combine mechanical and electrical components for fulfilling tasks normally carried out by macroscopic systems. Although their presence is found throughout all the aspects of daily life, recent years have witnessed countless research works involving the application of MEMS within the biomedical field, especially in drug synthesis and delivery, microsurgery, microtherapy, diagnostics and prevention, artificial organs, genome synthesis and sequencing, and cell manipulation and characterization. Their tremendous potential resides in the advantages offered by their reduced size, including ease of integration, lightweight, low power consumption, high resonance frequency, the possibility of integration with electrical or electronic circuits, reduced fabrication costs due to high mass production, and high accuracy, sensitivity, and throughput. In this context, this paper aims to provide an overview of MEMS technology by describing the main materials and fabrication techniques for manufacturing purposes and their most common biomedical applications, which have evolved in the past years.
Journal Article
Nanomaterials for Wound Dressings: An Up-to-Date Overview
by
Chircov, Cristina
,
Stoica, Alexandra Elena
,
Grumezescu, Alexandru Mihai
in
Bandages, Hydrocolloid
,
Biocompatibility
,
bionanomaterial
2020
As wound healing continues to be a challenge for the medical field, wound management has become an essential factor for healthcare systems. Nanotechnology is a domain that could provide different new approaches concerning regenerative medicine. It is worth mentioning the importance of nanoparticles, which, when embedded in biomaterials, can induce specific properties that make them of interest in applications as materials for wound dressings. In the last years, nano research has taken steps to develop molecular engineering strategies for different self-assembling biocompatible nanoparticles. It is well-known that nanomaterials can improve burn treatment and also the delayed wound healing process. In this review, the first-line of bioactive nanomaterials-based dressing categories frequently applied in clinical practice, including semi-permeable films, semipermeable foam dressings, hydrogel dressings, hydrocolloid dressings, alginate dressings, non-adherent contact layer dressings, and multilayer dressings will be discussed. Additionally, this review will highlight the lack of high-quality evidence and the necessity for future advanced trials because current wound healing therapies generally fail to provide an excellent clinical outcome, either structurally or functionally. The use of nanomaterials in wound management represents a unique tool that can be specifically designed to closely reflect the underlying physiological processes in tissue repair.
Journal Article
Fabrication and Applications of Microfluidic Devices: A Review
by
Niculescu, Adelina-Gabriela
,
Chircov, Cristina
,
Bîrcă, Alexandra Cătălina
in
Aluminum
,
Animals
,
Biocompatibility
2021
Microfluidics is a relatively newly emerged field based on the combined principles of physics, chemistry, biology, fluid dynamics, microelectronics, and material science. Various materials can be processed into miniaturized chips containing channels and chambers in the microscale range. A diverse repertoire of methods can be chosen to manufacture such platforms of desired size, shape, and geometry. Whether they are used alone or in combination with other devices, microfluidic chips can be employed in nanoparticle preparation, drug encapsulation, delivery, and targeting, cell analysis, diagnosis, and cell culture. This paper presents microfluidic technology in terms of the available platform materials and fabrication techniques, also focusing on the biomedical applications of these remarkable devices.
Journal Article
Novel Tumor-Targeting Nanoparticles for Cancer Treatment—A Review
by
Niculescu, Adelina-Gabriela
,
Grumezescu, Alexandru Mihai
in
Acids
,
Angiogenesis
,
Cancer therapies
2022
Being one of the leading causes of death and disability worldwide, cancer represents an ongoing interdisciplinary challenge for the scientific community. As currently used treatments may face limitations in terms of both efficiency and adverse effects, continuous research has been directed towards overcoming existing challenges and finding safer specific alternatives. In particular, increasing interest has been gathered around integrating nanotechnology in cancer management and subsequentially developing various tumor-targeting nanoparticles for cancer applications. In this respect, the present paper briefly describes the most used cancer treatments in clinical practice to set a reference framework for recent research findings, further focusing on the novel developments in the field. More specifically, this review elaborates on the top recent studies concerning various nanomaterials (i.e., carbon-based, metal-based, liposomes, cubosomes, lipid-based, polymer-based, micelles, virus-based, exosomes, and cell membrane-coated nanomaterials) that show promising potential in different cancer applications.
Journal Article
Hydrogel Dressings for the Treatment of Burn Wounds: An Up-To-Date Overview
by
Chircov, Cristina
,
Stoica, Alexandra Elena
,
Grumezescu, Alexandru Mihai
in
Antibiotics
,
Bacterial infections
,
Biomedical materials
2020
Globally, the fourth most prevalent devastating form of trauma are burn injuries. Ideal burn wound dressings are fundamental to facilitate the wound healing process and decrease pain in lower time intervals. Conventional dry dressing treatments, such as those using absorbent gauze and/or absorbent cotton, possess limited therapeutic effects and require repeated dressing changes, which further aggravate patients’ suffering. Contrariwise, hydrogels represent a promising alternative to improve healing by assuring a moisture balance at the burn site. Most studies consider hydrogels as ideal candidate materials for the synthesis of wound dressings because they exhibit a three-dimensional (3D) structure, which mimics the natural extracellular matrix (ECM) of skin in regard to the high-water amount, which assures a moist environment to the wound. There is a wide variety of polymers that have been used, either alone or blended, for the fabrication of hydrogels designed for biomedical applications focusing on treating burn injuries. The aim of this paper is to provide an up-to-date overview of hydrogels applied in burn wound dressings.
Journal Article