Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
67
result(s) for
"Gual, Philippe"
Sort by:
Autophagy and Non-Alcoholic Fatty Liver Disease
2014
Autophagy, or cellular self-digestion, is a catabolic process that targets cell constituents including damaged organelles, unfolded proteins, and intracellular pathogens to lysosomes for degradation. Autophagy is crucial for development, differentiation, survival, and homeostasis. Important links between the regulation of autophagy and liver complications associated with obesity, non-alcoholic fatty liver disease (NAFLD), have been reported. The spectrum of these hepatic abnormalities extends from isolated steatosis to non-alcoholic steatohepatitis (NASH), steatofibrosis, which sometimes leads to cirrhosis, and hepatocellular carcinoma. NAFLD is one of the three main causes of cirrhosis and increases the risk of liver-related death and hepatocellular carcinoma. The pathophysiological mechanisms of the progression of a normal liver to steatosis and then more severe disease are complex and still unclear. The regulation of the autophagic flux, a dynamic response, and the knowledge of the role of autophagy in specific cells including hepatocytes, hepatic stellate cells, immune cells, and hepatic cancer cells have been extensively studied these last years. This review will provide insight into the current understanding of autophagy and its role in the evolution of the hepatic complications associated with obesity, from steatosis to hepatocellular carcinoma.
Journal Article
Natural Killer Cells and Type 1 Innate Lymphoid Cells Are New Actors in Non-alcoholic Fatty Liver Disease
2019
Obesity and associated liver diseases (Non Alcoholic Fatty Liver Disease, NAFLD) are a major public health problem with increasing incidence in Western countries (25% of the affected population). These complications develop from a fatty liver (steatosis) to an inflammatory state (steatohepatitis) evolving toward fibrosis and hepatocellular carcinoma. Lipid accumulation in the liver contributes to hepatocyte cell death and promotes liver injury. Local immune cells are activated either by Danger Associated Molecular Patterns (DAMPS) released by dead hepatocytes or by bacterial products (PAMPS) reaching the liver due to increased intestinal permeability. The resulting low-grade inflammatory state promotes the progression of liver complications toward more severe grades. Innate lymphoid cells (ILC) are an heterogeneous family of five subsets including circulating Natural Killer (NK) cells, ILC1, ILC2, ILC3, and lymphocytes tissue-inducer cells (LTi). NK cells and tissue-resident ILCs, mainly located at epithelial surfaces, are prompt to rapidly react to environmental changes to mount appropriate immune responses. Recent works have demonstrated the interplay between ILCs subsets and the environment within metabolic active organs such as liver, adipose tissue and gut during diet-induced obesity leading or not to hepatic abnormalities. Here, we provide an overview of the newly roles of NK cells and ILC1 in metabolism focusing on their contribution to the development of NAFLD. We also discuss recent studies that demonstrate the ability of these two subsets to influence tissue-specific metabolism and how their function and homeostasis are affected during metabolic disorders.
Journal Article
Metabolic Fatty Liver Disease in Children: A Growing Public Health Problem
2021
Metabolic-associated fatty liver disease (MAFLD), previously called nonalcoholic fatty liver diseases (NAFLD), is one of the most important causes of chronic liver disease worldwide and will likely become the leading cause of end-stage liver disease in the decades ahead. MAFLD covers a continuum of liver diseases from fatty liver to nonalcoholic steatohepatitis (NASH), liver fibrosis/cirrhosis and hepatocellular cancer. Importantly, the growing incidence of overweight and obesity in childhood, 4% in 1975 to 18% in 2016, with persisting obesity complications into adulthood, is likely to be harmful by increasing the incidence of severe MAFLD at an earlier age. Currently, MAFLD is the leading form of chronic liver disease in children and adolescents, with a global prevalence of 3 to 10%, pointing out that early diagnosis is therefore crucial. In this review, we highlight the current knowledge concerning the epidemiology, risk factors and potential pathogenic mechanisms, as well as diagnostic and therapeutic approaches, of pediatric MAFLD.
Journal Article
Hepatic Expression Patterns of Inflammatory and Immune Response Genes Associated with Obesity and NASH in Morbidly Obese Patients
by
Patouraux, Stéphanie
,
Gugenheim, Jean
,
Bonnafous, Stéphanie
in
Abnormalities
,
Adipose tissue
,
Adult
2010
Obesity modulates inflammation and activation of immune pathways which can lead to liver complications. We aimed at identifying expression patterns of inflammatory and immune response genes specifically associated with obesity and NASH in the liver of morbidly obese patients.
Expression of 222 genes was evaluated by quantitative RT-PCR in the liver of morbidly obese patients with histologically normal liver (n = 6), or with severe steatosis without (n = 6) or with NASH (n = 6), and in lean controls (n = 5). Hepatic expression of 58 out of 222 inflammatory and immune response genes was upregulated in NASH patients. The most notable changes occurred in genes encoding chemokines and chemokine receptors involved in leukocyte recruitment, CD and cytokines involved in the T cell activation towards a Th1 phenotype, and immune semaphorins. This regulation seems to be specific for the liver since visceral adipose tissue expression and serum levels of MCP1, IP10, TNFα and IL6 were not modified. Importantly, 47 other genes were already upregulated in histologically normal liver (e.g. CRP, Toll-like receptor (TLR) pathway). Interestingly, serum palmitate, known to activate the TLR pathway, was increased with steatosis.
The liver of obese patients without histological abnormalities already displayed a low-grade inflammation and could be more responsive to activators of the TLR pathway. NASH was then characterized by a specific gene signature. These findings help to identify new potential actors of the pathogenesis of NAFLD.
Journal Article
Early postnatal soluble FGFR3 therapy prevents the atypical development of obesity in achondroplasia
by
Sarrazy, Vincent
,
Dumas, Karine
,
Salles, Jean-Pierre
in
Achondroplasia
,
Adipose tissue
,
Adolescent
2018
Achondroplasia is a rare genetic disease is characterized by abnormal bone development and early obesity. While the bone aspect of the disease has been thoroughly studied, early obesity affecting approximately 50% of them during childhood has been somewhat neglected. It nevertheless represents a major health problem in these patients, and is associated to life-threatening complications including increasing risk of cardiovascular pathologies. We have thus decided to study obesity in patients and to use the mouse model to evaluate if soluble FGFR3 therapy, an innovative treatment approach for achondroplasia, could also impact the development of this significant complication.
To achieve this, we have first fully characterized the metabolic deregulations in these patients by conducting a longitudinal retrospective study, in children with achondroplasia Anthropometric, densitometric measures as well as several blood parameters were recorded and compared between three age groups ranging from [0-3], [4-8] and [9-18] years old. Our results show unexpected results with the development of an atypical obesity with preferential fat deposition in the abdomen that is remarkably not associated with classical complications of obesity such as diabetes or hypercholosterolemia. Because it is not associated with diabetes, the atypical obesity has not been studied in the past even though it is recognized as a real problem in these patients. These results were validated in a murine model of achondroplasia (Fgfr3ach/+) where similar visceral adiposity was observed. Unexpected alterations in glucose metabolism were highlighted during high-fat diet. Glucose, insulin or lipid levels remained low, without the development of diabetes. Very interestingly, in achondroplasia mice treated with soluble FGFR3 during the growth period (from D3 to D22), the development of these metabolic deregulations was prevented in adult animals (between 4 and 14 weeks of age). The lean-over-fat tissues ratio was restored and glucose metabolism showed normal levels. Treating Fgfr3ach/+ mice with soluble FGFR3 during the growth period, prevented the development of these metabolic deregulations in adult animals and restored lean-over-fat tissues ratio as well as glucose metabolism in adult animals.
This study demonstrate that achondroplasia patients develop an atypical obesity with preferential abdominal obesity not associated with classical complications. These results suggest that achondroplasia induces an uncommon metabolism of energy, directly linked to the FGFR3 mutation. These data strongly suggest that this common complication of achondroplasia should be included in the clinical management of patients. In this context, sFGFR3 proved to be a promising treatment for achondroplasia by normalizing the biology at different levels, not only restoring bone growth but also preventing the atypical visceral obesity and some metabolic deregulations.
Journal Article
Blood-based MASH diagnostic in candidates for bariatric surgery using mid-infrared spectroscopy: a European multicenter prospective study
by
Sarfati-Lebreton, Marine
,
Maréchal, Chloé
,
Toullec, Alexis
in
692/4020/4021
,
692/4020/4021/1607
,
Adult
2024
Metabolic dysfunction-associated steatotic liver disease (MASLD) is common in individuals with obesity. Sexual dimorphism is present in MASLD. A noninvasive test to diagnose the severity of the disease, in particular the presence of Metabolic dysfunction-associated steatohepatitis (MASH), is lacking. This European multicenter prospective study uses a blood test based on mid-infrared (MIR) metabolic fingerprinting of individuals with severe or morbid obesity to diagnose MASH. Three hundred eighty-two individuals with severe or morbid obesity undergoing bariatric surgery were enrolled prospectively. Liver biopsies were obtained during surgery and assessed centrally. An algorithm was defined to calculate a score from the recorded MIR spectrum and to establish a diagnostic threshold to classify patients with MASH. Among the women (n = 217), MASH was diagnosed in 14.3% of cases. For women, the performance in terms of AUC were 0.83 and 0.82 in the calibration and validation groups, respectively. For a threshold of 0.1817, sensitivities were 86% and 70%, specificities were 81% and 75%, PPV were 43% and 32%, NPV were 97% and 94% and ACC were 82% and 74% for the calibration and validation groups, respectively. For men (n = 78; MASH: 33.3%), the performance of the spectral model was poor. The metabolic fingerprint obtained by MIR spectroscopy can rule out MASH in women with severe or morbid obesity. Its value in men needs new studies.
Trial registration
: ClinicalTrials.gov identifier: ClinicalTrials.gov identifier: NCT03978247 (04/06/2019)
Journal Article
Bax Inhibitor-1 preserves pancreatic β-cell proteostasis by limiting proinsulin misfolding and programmed cell death
2024
The prevalence of diabetes steadily increases worldwide mirroring the prevalence of obesity. Endoplasmic reticulum (ER) stress is activated in diabetes and contributes to β-cell dysfunction and apoptosis through the activation of a terminal unfolded protein response (UPR). Our results uncover a new role for Bax Inhibitor-One (BI-1), a negative regulator of inositol-requiring enzyme 1 (IRE1α) in preserving β-cell health against terminal UPR-induced apoptosis and pyroptosis in the context of supraphysiological loads of insulin production.
BI-1-
deficient mice experience a decline in endocrine pancreatic function in physiological and pathophysiological conditions, namely obesity induced by high-fat diet (HFD). We observed early-onset diabetes characterized by hyperglycemia, reduced serum insulin levels, β-cell loss, increased pancreatic lipases and pro-inflammatory cytokines, and the progression of metabolic dysfunction. Pancreatic section analysis revealed that
BI-1
deletion overburdens unfolded proinsulin in the ER of β-cells, confirmed by ultrastructural signs of ER stress with overwhelmed IRE1α endoribonuclease (RNase) activity in freshly isolated islets. ER stress led to β-cell dysfunction and islet loss, due to an increase in immature proinsulin granules and defects in insulin crystallization with the presence of Rod-like granules. These results correlated with the induction of autophagy, ER phagy, and crinophagy quality control mechanisms, likely to alleviate the atypical accumulation of misfolded proinsulin in the ER. In fine, BI-1 in β-cells limited IRE1α RNase activity from triggering programmed β-cell death through apoptosis and pyroptosis (caspase-1, IL-1β) via NLRP3 inflammasome activation and metabolic dysfunction. Pharmaceutical IRE1α inhibition with STF-083010 reversed β-cell failure and normalized the metabolic phenotype. These results uncover a new protective role for BI-1 in pancreatic β-cell physiology as a stress integrator to modulate the UPR triggered by accumulating unfolded proinsulin in the ER, as well as autophagy and programmed cell death, with consequences on β-cell function and insulin secretion.
In pancreatic β-cells,
BI-1
–/–
deficiency perturbs proteostasis with proinsulin misfolding, ER stress, terminal UPR with overwhelmed IRE1α/XBP1s/CHOP activation, inflammation, β-cell programmed cell death, and diabetes.
Journal Article
Therapeutic Physical Exercise Programs in the Context of NASH Cirrhosis and Liver Transplantation: A Systematic Review
by
Anty, Rodolphe
,
Chierici, Andrea
,
Gual, Philippe
in
Aerobics
,
Antioxidants
,
Care and treatment
2023
In recent years, various physical exercise interventions have been developed with a view to reducing comorbidity and morbidity rates among patients with chronic diseases. Regular physical exercise has been shown to reduce hypertension and mortality in patients with type 2 diabetes. Diabetes and obesity are often associated with the development of nonalcoholic fatty liver disease, which can lead to liver fibrosis and then (in some cases) nonalcoholic steatohepatitis cirrhosis. We searched the literature for publications on personalized physical exercise programs in cirrhotic patients before and after liver transplantation. Eleven studies in cirrhotic patients and one study in liver transplant recipients were included in the systematic review, the results of which were reported in compliance with the preferred reporting items for systematic reviews and meta-analyses guidelines. The personalized physical exercise programs lasted for 6 to 16 weeks. Our review evidenced improvements in peak oxygen consumption and six-minute walk test performance and a reduction in the hepatic venous pressure gradient. In cirrhotic patients, personalized physical exercise programs improve quality of life, are not associated with adverse effects, and (for transplant recipients) might reduce the 90-day hospital readmission rate. However, none of the literature data evidenced reductions in the mortality rates before and after transplantation. Further prospective studies are needed to evaluate the benefit of long-term physical exercise programs in cirrhotic patients before and after liver transplantation.
Journal Article
No association between binge eating disorder and severity of non‐alcoholic fatty liver disease in severely obese patients
by
Patouraux, Stéphanie
,
Canivet, Clémence M
,
Anty, Rodolphe
in
Addictive behaviors
,
Anxiety
,
Binge eating
2020
Background and Aim The main aim of this study was to evaluate if the binge eating disorders (BEDs) related to obesity were associated with the severity of non‐alcoholic fatty liver disease (NAFLD). Methods Severely obese patients who had been referred for bariatric surgery were included in this study at the Nice University Hospital. All patients underwent a liver biopsy at the time of surgery. Between 2008 and 2015, 388 patients had an assessable Bulimia Test (BULIT) self‐questionnaire at the time of surgery. A subgroup (n = 183), between 2011 and 2015, also responded to a Beck Depression Inventory, Hospital Anxiety and Depression Scale, and a Fatigue Impact Scale autoquestionnaire. A control group of 29 healthy people matched by age and gender was included. Results Among the 388 obese patients (median age 40 years, body mass index 41.7 kg/m2, 81% women), 14 patients had a “probable diagnosis” of BED, and 47 patients had a “high risk” of developing a BED according to the BULIT. Obese patients had significantly more severe BED, depression, anxiety, and fatigue compared to controls. Steatosis, non‐alcoholic steatohepatitis, or fibrosis was not associated with BED. Similarly, the severity of NAFLD was not associated with depression, anxiety, or fatigue. Conclusions Severely obese patients had more severe BED, depression, anxiety, and fatigue than lean subjects independent of the severity of NAFLD. Non‐alcoholic fatty liver disease, the emerging liver disease of the 21st century, is related to obesity. However, binge eating disorders, and also frequently associated psychiatric disorders (depression, anxiety, and fatigue), are not associated with the severity of liver pathology in severely obese patients.
Journal Article
Osteopontin promotes age-related adipose tissue remodeling through senescence-associated macrophage dysfunction
by
Gabor Czibik
,
Takehiko Yoshimitsu
,
Corneliu Henegar
in
[SDV]Life Sciences [q-bio]
,
Adipocytes
,
Adipose Tissue
2023
Adipose tissue macrophages (ATMs) play an important role in obesity and inflammation, and they accumulate in adipose tissue (AT) with aging. Furthermore, increased ATM senescence has been shown in obesity-related AT remodeling and dysfunction. However, ATM senescence and its role are unclear in age-related AT dysfunction. Here, we show that ATMs (a) acquire a senescence-like phenotype during chronological aging; (b) display a global decline of basic macrophage functions such as efferocytosis, an essential process to preserve AT homeostasis by clearing dysfunctional or apoptotic cells; and (c) promote AT remodeling and dysfunction. Importantly, we uncover a major role for the age-associated accumulation of osteopontin (OPN) in these processes in visceral AT. Consistently, loss or pharmacologic inhibition of OPN and bone marrow transplantation of OPN-/- mice attenuate the ATM senescence-like phenotype, preserve efferocytosis, and finally restore healthy AT homeostasis in the context of aging. Collectively, our findings implicate pharmacologic OPN inhibition as a viable treatment modality to counter ATM senescence-mediated AT remodeling and dysfunction during aging.
Journal Article