Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
44
result(s) for
"Guan, Jingyun"
Sort by:
Assessing the Spatiotemporal Evolution of Anthropogenic Impacts on Remotely Sensed Vegetation Dynamics in Xinjiang, China
by
Yao, Junqiang
,
Li, Moyan
,
Zheng, Jianghua
in
alpine vegetation
,
Animal husbandry
,
anthropogenic activities
2021
The dynamics of the ecosystem represented by vegetation under the influence of human activities have become an important issue in the study of the regional ecological environment. Xinjiang is one of the most ecologically fragile areas in the world, and vegetation changes have received extensive attention. Xinjiang is one of the most ecologically fragile areas in the world, and vegetation changes have received extensive attention. However, the spatiotemporal patterns and evolutionary trends of anthropogenic impacts on vegetation dynamics in Xinjiang are still unclear. In this study, the anthropogenic impacts on vegetation dynamics were quantitatively assessed by combining the improved normalized difference vegetation index (NDVI) prediction model and the residual analysis method in Xinjiang, China. The human driving factors were analyzed with the support of a stepwise multiple regression model for vegetation changes at the county scale. Based on trend analysis and the Hurst exponent, the spatiotemporal characteristics and evolutionary trends of the impact of human activities on vegetation change were discussed. The results show that (1) the NDVI values in Xinjiang showed a gradually increasing trend at a rate of 0.005/10 years from 1982 to 2018, and the vegetation dynamics mainly showed significant improvements (57.09% of the vegetated areas), especially for crops. (2) The anthropogenic effects of vegetation changes in Xinjiang mainly included positive impact increases (43.22% of the vegetated areas) from 2000 to 2018. Human activities promoted the increase in the NDVI of various vegetation types. Both the positive and negative impacts of human activities increased over the study period, and the growth rate of the positive influence (0.08%/10 years) was higher than that of the negative influence (0.04%/10 years). (3) The cultivated area, GDP of primary industry, and population are the main anthropogenic factors causing the increase in NDVI, which dominate the vegetation greening in 30.34%, 29.22%, and 28.09% of the counties in Xinjiang, respectively. The animal husbandry population, agricultural population, and livestock number are the main anthropogenic factors causing the decrease in NDVI, which dominate the vegetation degradation in 23.60%, 21.35%, and 17.98% of the counties in Xinjiang, respectively. (4) The evolutionary trend of the anthropogenic impact on vegetation dynamics in Xinjiang will be dominated by anti-persistence (53.84% of the vegetated areas), thereby mainly showing that the positive impacts continued to increase (22.56% of the vegetated areas), especially for crops, shrubs, grasslands, and alpine vegetation. Our results are helpful in understanding the characteristics and evolutionary trends of vegetation changes in arid areas caused by human activities and are of significance as a reference for policymakers to appropriately adjust policy guidance in a timely manner to promote the protection and sustainable development of fragile ecosystems.
Journal Article
Vegetation Browning Trends in Spring and Autumn over Xinjiang, China, during the Warming Hiatus
2022
Satellite-derived vegetation records (GIMMS3g-NDVI) report that climate warming promotes vegetation greening trends; however, the climate impacts on vegetation growth during the global warming hiatus period (1998–2012) remain unclear. In this study, we focused on the vegetation change trend in Xinjiang in spring and autumn before and during the recent warming hiatus period, and their climate-driving mechanisms, which have not been examined in previous studies. Based on satellite records, our results indicated that the summer normalized difference vegetation index (NDVI) in Xinjiang experienced a greening trend, while a browning trend existed in spring and autumn during this period. The autumn NDVI browning trend in Xinjiang was larger than that in spring; however, the spring NDVI displayed a higher correlation with climatic factors than did the autumn NDVI. During the warming hiatus, spring climatic factors were the main controlling factors of spring NDVI, and spring vapor pressure deficit (VPD) had the highest positive correlation with spring NDVI, followed by spring temperature. The larger increase in air temperature in spring than in autumn resulted in increased VPD differences in spring and autumn. In autumn, summer climatic factors (e.g., VPD, WS, RH, and precipitation) were significantly correlated with the autumn NDVI during the warming hiatus. However, the autumn temperature was weakly correlated with the autumn NDVI. Our results have significant implications for understanding the response of vegetation growth to recent and future climatic conditions.
Journal Article
Important role of precipitation in controlling a more uniform spring phenology in the Qinba Mountains, China
2023
Under global warming, the gradual pattern of spring phenology along elevation gradients (EG) has significantly changed. However, current knowledge on the phenomenon of a more uniform spring phenology is mainly focused on the effect of temperature and neglected precipitation. This study aimed to determine whether a more uniform spring phenology occurs along EG in the Qinba Mountains (QB) and explore the effect of precipitation on this pattern. We used Savitzky-Golay (S-G) filtering to extract the start of season (SOS) of the forest from the MODIS Enhanced Vegetation Index (EVI) during 2001-2018 and determined the main drivers of the SOS patterns along EG by partial correlation analyses. The SOS showed a more uniform trend along EG in the QB with a rate of 0.26 ± 0.01 days 100 m -1 per decade during 2001-2018, but there were differences around 2011. A delayed SOS at low elevations was possibly due to the reduced spring precipitation (SP) and spring temperature (ST) between 2001 and 2011. Additionally, an advanced SOS at high elevations may have been caused by the increased SP and reduced winter temperature (WT). These divergent trends contributed to a significant uniform trend of SOS with a rate of 0.85 ± 0.02 days 100 m -1 per decade. Since 2011, significantly higher SP (especially at low elevations) and rising ST advanced the SOS, and the SOS at lower altitudes was more advanced than at higher altitudes, resulting in greater SOS differences along EG (0.54 ± 0.02 days 100 m -1 per decade). The SP determined the direction of the uniform trend in SOS by controlling the SOS patterns at low elevations. A more uniform SOS may have important effects on local ecosystem stability. Our findings could provide a theoretical basis for establishing ecological restoration measures in areas experiencing similar trends.
Journal Article
Probabilistic assessment of drought stress vulnerability in grasslands of Xinjiang, China
by
Li, Congren
,
Zheng, Jianghua
,
Guan, Jingyun
in
Carbon cycle
,
Carbon sequestration
,
Climate change
2023
In the process of climate warming, drought has increased the vulnerability of ecosystems. Due to the extreme sensitivity of grasslands to drought, grassland drought stress vulnerability assessment has become a current issue to be addressed. First, correlation analysis was used to determine the characteristics of the normalized precipitation evapotranspiration index (SPEI) response of the grassland normalized difference vegetation index (NDVI) to multiscale drought stress (SPEI-1 ~ SPEI-24) in the study area. Then, the response of grassland vegetation to drought stress at different growth periods was modeled using conjugate function analysis. Conditional probabilities were used to explore the probability of NDVI decline to the lower percentile in grasslands under different levels of drought stress (moderate, severe and extreme drought) and to further analyze the differences in drought vulnerability across climate zones and grassland types. Finally, the main influencing factors of drought stress in grassland at different periods were identified. The results of the study showed that the spatial pattern of drought response time of grassland in Xinjiang had obvious seasonality, with an increasing trend from January to March and November to December in the nongrowing season and a decreasing trend from June to October in the growing season. August was the most vulnerable period for grassland drought stress, with the highest probability of grassland loss. When the grasslands experience a certain degree of loss, they develop strategies to mitigate the effects of drought stress, thereby decreasing the probability of falling into the lower percentile. Among them, the highest probability of drought vulnerability was found in semiarid grasslands, as well as in plains grasslands and alpine subalpine grasslands. In addition, the primary drivers of April and August were temperature, whereas for September, the most significant influencing factor was evapotranspiration. The results of the study will not only deepen our understanding of the dynamics of drought stress in grasslands under climate change but also provide a scientific basis for the management of grassland ecosystems in response to drought and the allocation of water in the future.
Journal Article
The potential habitat of desert locusts is contracting: predictions under climate change scenarios
2021
Desert locusts are notorious for their widespread distribution and strong destructive power. Their influence extends from the vast arid and semiarid regions of western Africa to northwestern India. Large-scale locust outbreaks can have devastating consequences for food security, and their social impact may be long-lasting. Climate change has increased the uncertainty of desert locust outbreaks, and predicting suitable habitats for this species under climate change scenarios will help humans deal with the potential threat of locust outbreaks. By comprehensively considering climate, soil, and terrain variables, the maximum entropy (MaxEnt) model was used to predict the potential habitats of solitary desert locusts in the 2050s and 2070s under the four shared socioeconomic pathways (SSP126, SSP245, SSP370, and SSP585) in the CMIP6 model. The modeling results show that the average area under the curve (AUC) and true skill statistic (TSS) reached 0.908 ± 0.002 and 0.701, respectively, indicating that the MaxEnt model performed extremely well and provided outstanding prediction results. The prediction results indicate that climate change will have an impact on the distribution of the potential habitat of solitary desert locusts. With the increase in radiative forcing overtime, the suitable areas for desert locusts will continue to contract, especially in the 2070s under the SSP585 scenario, and the moderately and highly suitable areas will decrease by 0.88 × 10 6 km 2 and 1.55 × 10 6 km 2 , respectively. Although the potentially suitable area for desert locusts is contracting, the future threat posed by the desert locust to agricultural production and food security cannot be underestimated, given the combination of maintained breeding areas, frequent extreme weather events, pressure from population growth, and volatile sociopolitical environments. In conclusion, methods such as monitoring and early warning, financial support, regional cooperation, and scientific prevention and control of desert locust plagues should be further implemented.
Journal Article
Climate Drivers Contribute in Vegetation Greening Stalls of Arid Xinjiang, China: An Atmospheric Water Drying Effect
2022
Xinjiang, an arid region of China, has experienced a substantial warming–wetting trend over the past five decades. However, climate change has affected vegetation growth/greening in arid Central Asia in unexpected ways due to complex ecological effects. We found a significant greening trend (consistent increase in the normalized difference vegetation index or NDVI) from 1982 to 1996, during the growing season; however, the NDVI consequently decreased and plateaued from 1997 to 2015, especially in naturally vegetated regions. Atmospheric vapor pressure deficit (VPD) is a critical driver of vegetation growth, is a direct measure of atmospheric aridity, and has increased sharply in recent decades. A partial correlation analysis indicated a significant relationship between growing season NDVI and VPD from 1997 to 2015. This implies that decreased VPD corresponds to increasing NDVI, and increasing VPD corresponds to a decrease and plateauing in the NDVI trend. Using the partial derivative equation method, our results suggest that the trend in growing season NDVI was affected primarily by increasing VPD (contributing 87.57%) from 1997 to 2015, especially in the grassland and desert biomes. Rising temperatures lead to a greater VPD, resulting in exacerbated evaporative water loss. Soil drought and atmospheric aridity limit plant stomatal conductance and could effectively lead to a decrease in the greening trend and increased vegetation mortality in arid Xinjiang. Our results emphasize the importance of VPD as a limiting factor of greening trends in arid regions. The influence of VPD on vegetation growth should be considered when evaluating arid ecosystem functioning under global warming.
Journal Article
Assessment of Vegetation Drought Loss and Recovery in Central Asia Considering a Comprehensive Vegetation Index
2024
In the context of drought events caused by global warming, there is limited understanding of vegetation loss caused by drought and the subsequent recovery of vegetation after drought ends. However, employing a single index representing a specific vegetation characteristic to explore drought’s impact on vegetation may overlook vegetation features and introduce increased uncertainty. We applied the enhanced vegetation index (EVI), fraction of vegetation cover (FVC), gross primary production (GPP), leaf area index (LAI), and our constructed remote sensing vegetation index (RSVI) to assess vegetation drought in Central Asia. We analyzed the differences in drought experiences for different climatic regions and vegetation types and vegetation loss and recovery following drought events. The results indicate that during drought years (2012 and 2019), the differences in vegetation drought across climatic regions were considerable. The vegetation in arid, semiarid, and Mediterranean climate regions was more susceptible to drought. The different indices used to assess vegetation loss exhibited varying degrees of dynamic changes, with vegetation in a state of mild drought experiencing more significantly during drought events. The different vegetation assessment indices exhibited significant variations during the drought recovery periods (with a recovery period of 16 days: EVI of 85%, FVC of 50%, GPP of 84%, LAI of 61%, and RSVI of 44%). Moreover, the required recovery periods tended to decrease from arid to humid climates, influenced by both climate regions and vegetation types. Sensitivity analysis indicated that the primary climatic factors leading to vegetation loss varied depending on the assessment indices used. The proposed RSVI demonstrates high sensitivity, correlation, and interpretability to dry–wet variations and can be used to assess the impact of drought on vegetation. These findings are essential for water resource management and the implementation of measures that mitigate vegetation drought.
Journal Article
Research on the Mechanism of the Influence of Thermal Stress on Tourists’ Environmental Responsibility Behavior Intention: An Example from a Desert Climate Region, China
2024
The desert climate region attracts a multitude of tourists due to its distinctive landforms and climatic conditions, however, it also presents challenges for environmental protection. This article constructs a theoretical model that examines the influence of thermal stress on tourists’ environmental responsibility behavior intention (ERBI), with anticipated pride and anticipated guilt serving as mediating factors. An empirical study is conducted in Turpan, Xinjiang, which represents a typical inland arid area in China. The results indicate that: (1) thermal stress does not have a significant direct impact on ERBI, nevertheless, anticipated pride and anticipated guilt play crucial mediating roles between thermal stress and this intention. (2) Furthermore, environmental knowledge positively moderates the relationship between anticipated pride, anticipated guilt, and the ERBI. This research contributes to the understanding of how tourists’ anticipatory emotions affect their ERBI in desert climate regions while deepening our comprehension of the driving mechanisms behind such intentions among tourists. Moreover, it provides theoretical references for promoting environmentally responsible behaviors among tourists visiting desert climate regions.
Journal Article
Adenine base editing rescues disrupted BCKDH function and reduces BCAAs toxic accumulation in maple syrup urine disease patient iPSC-hepatic organoids
by
Guan, Jingyun
,
Ma, Xu
,
Wan, Zirui
in
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) - genetics
,
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) - metabolism
,
Adenine - metabolism
2025
Background
Maple syrup urine disease (MSUD) is an inherited metabolic disorder caused by a deficiency in the activity of the hepatic branched-chain α-ketoacid dehydrogenase (BCKDH) complex, which leads to the toxic accumulation of three branched-chain amino acids (BCAAs) and their respective α-ketoacid, resulting in severe neurotoxicity, coma and even death without effective therapeutic measures.
Methods
In this study, we established the patient induced pluripotent stem cells (iPSC)-derived hepatic organoids (HOs), analyzed the characteristics, and applied adenine base editor (ABE8e) to correct a mutation (T322I) of the BCKDHB (branched chain keto acid dehydrogenase E1, beta polypeptide) gene in patient induced pluripotent stem cells (iPSC)-derived hepatic organoids (HOs). qRT-PCR and western blot analysis were performed to assess the expression level of BCKDHA (branched chain keto acid dehydrogenase E1, alpha polypeptide) and BCKDHB. The effects of base editing were comprehensively analyzed using both bulk RNA sequencing and single-cell RNA sequencing (scRNA-Seq).
Results
Immunofluorescence and RT-PCR arrayed the high expression of hepatoblast specific proteins in HOs, such as α-1-anti-trypsin (A1AT), hepatocyte nuclear factor-4-alpha (HNF4A), cytokeratin18 (CK18), albumin (ALB), cytochrome P450 family 3 subfamily A member 4 (CYP3A4) and cytochrome P450 family 3 subfamily A member 7(CYP3A7). Functional experiments indicated that these HOs recapitulated characteristics of hepatocytes like glycogen accumulation, low-density lipoprotein (LDL) uptake, indocyanine green (ICG) uptake and release as well as quantitation of ALB and urea from HOs. The levels of BCKDHA and BCKDHB were dramatically decreased in MSUD-HOs compared with control-HOs (
P
< 0.01) detected by qRT-PCR, western blot and immunofluorescence. Deep sequencing and whole genome sequencing (WGS) demonstrated that the correction of BCKDHB mutation in patient iPSC-derived HOs caused high on-target gene editing without any detectable off-target effects. Moreover, the corrected MSUD-HOs exhibited restored BCKDH enzymatic function and reduced BCAAs level. The transcriptome analysis indicates that the MSUD-HOs with BCKDHB mutation reduced mRNA level of regulating metabolism associated with liver mitochondrial function, while the corrected MSUD-HOs rescued those processes after ABE8e correction. The scRNA-Seq analysis further validated the rescue effects of BCKDH function after gene editing.
Conclusion
Our study provides reliable evidence that ABE8e is highly efficient and safe in correcting patient-derived HOs from MSUD, indicating the feasibility to be a transformative treatment for genetic hepatic diseases like MSUD.
Graphical abstract
Journal Article
Quantitative Assessment of the Relative Contributions of Climate and Human Factors to Net Primary Productivity in the Ili River Basin of China and Kazakhstan
2022
It is necessary to quantitatively study the relationship between climate and human factors on net primary productivity (NPP) inorder to understand the driving mechanism of NPP and prevent desertification. This study investigated the spatial and temporal differentiation features of actual net primary productivity (ANPP) in the Ili River Basin, a transboundary river between China and Kazakhstan, as well as the proportional contributions of climate and human causes to ANPP variation. Additionally, we analyzed the pixel-scale relationship between ANPP and significant climatic parameters. ANPP in the Ili River Basin increased from 2001 to 2020 and was lower in the northeast and higher in the southwest; furthermore, it was distributed in a ring around the Tianshan Mountains. In the vegetation improvement zone, human activities were the dominant driving force, whereas in the degraded zone, climate change was the primary major driving force. The correlation coefficients of ANPP with precipitation and temperature were 0.322 and 0.098, respectively. In most areas, there was a positive relationship between vegetation change, temperature and precipitation. During 2001 to 2020, the basin’s climatic change trend was warm and humid, which promoted vegetation growth. One of the driving factors in the vegetation improvement area was moderate grazing by livestock.
Journal Article