Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,148
result(s) for
"Guan, Ping"
Sort by:
Learn from failures and stay hopeful to GPR40, a GPCR target with robust efficacy, for therapy of metabolic disorders
2022
GPR40 is a class A G-protein coupled receptor (GPCR) mainly expressed in pancreas, intestine, and brain. Its endogenous ligand is long-chain fatty acids, which activate GPR40 after meal ingestion to induce secretion of incretins in the gut, including GLP-1, GIP, and PYY, the latter control appetite and glucose metabolism. For its involvement in satiety regulation and metabolic homeostasis, partial and AgoPAM (Positive Allosteric Modulation agonist) GPR40 agonists had been developed for type 2 diabetes (T2D) by many pharmaceutical companies. The proof-of-concept of GPR40 for control of hyperglycemia was achieved by clinical trials of partial GPR40 agonist, TAK-875, demonstrating a robust decrease in HbA 1c (-1.12%) after chronic treatment in T2D. The development of TAK-875, however, was terminated due to liver toxicity in 2.7% patients with more than 3-fold increase of ALT in phase II and III clinical trials. Different mechanisms had since been proposed to explain the drug-induced liver injury, including acyl glucuronidation, inhibition of mitochondrial respiration and hepatobiliary transporters, ROS generation, etc. In addition, activation of GPR40 by AgoPAM agonists in pancreas was also linked to β-cell damage in rats. Notwithstanding the multiple safety concerns on the development of small-molecule GPR40 agonists for T2D, some partial and AgoPAM GPR40 agonists are still under clinical development. Here we review the most recent progress of GPR40 agonists development and the possible mechanisms of the side effects in different organs, and discuss the possibility of developing novel strategies that retain the robust efficacy of GPR40 agonists for metabolic disorders while avoid toxicities caused by off-target and on-target mechanisms.
Journal Article
Feasibility and reproducibility of T2 mapping and DWI for identifying malignant lymph nodes in rectal cancer
2021
Objectives
To evaluate the diagnostic value and reproducibility of T2 mapping versus apparent diffusion coefficients (ADC) for identifying malignant lymph nodes in patients with non-mucinous rectal adenocarcinoma.
Methods
High-resolution magnetic resonance imaging, diffusion-weighted imaging, and T2 mapping were performed on patients with suspected metastatic lymph nodes in the mesorectum or around the superior rectal artery with a short-axis diameter of 4–10 mm. The T2 and ADC values of pathology-confirmed metastatic versus non-metastatic lymph nodes were compared using the independent-samples
t
test and receiver operating characteristic curves. Intra- and inter-observer reproducibility were tested. The cutoff value for T2 relaxation time was determined.
Results
In total, 67 lymph nodes underwent histological analysis, with 24 in the non-metastatic and 43 in the metastatic groups. Intra- and inter-observer agreements for T2 values were 0.999 and 0.998, respectively, which were higher than the ADC values of 0.924 and 0.844, respectively. The mean T2 and ADC values for metastatic lymph nodes (65 ± 7.8 ms and 1.17 ± 0.16 × 10
−3
mm
2
/s, respectively) were significantly lower than for benign lymph nodes(83 ± 5.7 ms and 1.29 ± 0.15 × 10
−3
mm
2
/s, respectively). T2 values had a higher AUC value of 0.990 than the AUC value for ADC of 0.729. With a cutoff value of 77 ms, sensitivity and specificity for T2 values were 95% and 96%, respectively.
Conclusions
T2 mapping had higher diagnostic efficacy and reproducibility than ADC and may be useful in differentiating metastatic from non-metastatic lymph nodes in rectal cancer.
Key Points
•
Mean T2 values were significantly shorter for malignant versus benign LNs in patients with non-mucinous rectal adenocarcinoma.
•
The diagnostic efficacy and reproducibility of T2 values were excellent and superior to ADC values.
Journal Article
Fluoxetine attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage: a possible role for the regulation of TLR4/MyD88/NF-κB signaling pathway
Background
Neuroinflammation is closely associated with functional outcome in subarachnoid hemorrhage (SAH) patients. Our recent study demonstrated that fluoxetine inhibited NLRP3 inflammasome activation and attenuated necrotic cell death in early brain injury after SAH, while the effects and potential mechanisms of fluoxetine on neuroinflammation after SAH have not been well-studied yet.
Methods
One hundred and fifty-three male SD rats were subjected to the endovascular perforation model of SAH. Fluoxetine (10 mg/kg) was administered intravenously at 6 h after SAH induction. TAK-242 (1.5 mg/kg), an exogenous TLR4 antagonist, was injected intraperitoneally 1 h after SAH. SAH grade, neurological scores, brain water content, Evans blue extravasation, immunofluorescence/TUNEL staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot were performed.
Results
Fluoxetine administration attenuated BBB disruption, brain edema, and improved neurological function after SAH. In addition, fluoxetine alleviated the number of Iba-1-positive microglia/macrophages, neutrophil infiltration, and cell death. Moreover, fluoxetine reduced the levels of pro-inflammatory cytokines, downregulated the expression of TLR4 and MyD88, and promoted the nuclear translocation of NF-κB p65, which
were
also found in rats with TAK-242 administration. Combined administration of fluoxetine and TAK-242 did not enhance the neuroprotective effects of fluoxetine.
Conclusion
Fluoxetine attenuated neuroinflammation and improved neurological function in SAH rats. The potential mechanisms involved, at least in part, TLR4/MyD88/NF-κB signaling pathway.
Journal Article
Deleterious effects of formalin-fixation and delays to fixation on RNA and miRNA-Seq profiles
2019
The National Cancer Institute conducted the Biospecimen Pre-analytical Variables (BPV) study to determine the effects of formalin fixation and delay to fixation (DTF) on the analysis of nucleic acids. By performing whole transcriptome sequencing and small RNA profiling on matched snap-frozen and FFPE specimens exposed to different delays to fixation, this study aimed to determine acceptable delays to fixation and proper workflow for accurate and reliable Next-Generation Sequencing (NGS) analysis of FFPE specimens. In comparison to snap-freezing, formalin fixation changed the relative proportions of intronic/exonic/untranslated RNA captured by RNA-seq for most genes. The effects of DTF on NGS analysis were negligible. In 80% of specimens, a subset of RNAs was found to differ between snap-frozen and FFPE specimens in a consistent manner across tissue groups; this subset was unaffected in the remaining 20% of specimens. In contrast, miRNA expression was generally stable across various formalin fixation protocols, but displayed increased variability following a 12 h delay to fixation.
Journal Article
(S)-N-Benzyl-1-phenyl-3,4-dihydroisoqunoline-2(1H)-carboxamide Derivatives, Multi-Target Inhibitors of Monoamine Oxidase and Cholinesterase: Design, Synthesis, and Biological Activity
by
Zhang, Chu-Yu
,
Zhang, Li-Ping
,
Zhuang, Dai-Na
in
3,4-dihydroisoquinoline
,
Acetylcholinesterase - metabolism
,
Alzheimer's disease
2023
A series of (S)-1-phenyl-3,4-dihydroisoquinoline-2(1H)-carboxamide derivatives was synthesized and evaluated for inhibitory activity against monoamine oxidase (MAO)-A and-B, acetylcholine esterase (AChE), and butyrylcholine esterase (BChE). Four compounds (2i, 2p, 2t, and 2v) showed good inhibitory activity against both MAO-A and MAO-B, and two compounds (2d and 2j) showed selective inhibitory activity against MAO-A, with IC50 values of 1.38 and 2.48 µM, respectively. None of the compounds showed inhibitory activity against AChE; however, 12 compounds showed inhibitory activity against BChE. None of the active compounds showed cytotoxicity against L929cells. Molecular docking revealed several important interactions between the active analogs and amino acid residues of the protein receptors. This research paves the way for further study aimed at designing MAO and ChE inhibitors for the treatment of depression and neurodegenerative disorders.
Journal Article
Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy
2017
5′-Adenosine monophosphate–activated protein kinase (AMPK) is a master regulator of energy homeostasis in eukaryotes. Despite three decades of investigation, the biological roles of AMPK and its potential as a drug target remain incompletely understood, largely because of a lack of optimized pharmacological tools. We developed MK-8722, a potent, direct, allosteric activator of all 12 mammalian AMPK complexes. In rodents and rhesus monkeys, MK-8722–mediated AMPK activation in skeletal muscle induced robust, durable, insulin-independent glucose uptake and glycogen synthesis, with resultant improvements in glycemia and no evidence of hypoglycemia. These effects translated across species, including diabetic rhesus monkeys, but manifested with concomitant cardiac hypertrophy and increased cardiac glycogen without apparent functional sequelae.
Journal Article
The influence of genotype makeup on the effectiveness of growth hormone therapy in children with Prader-Willi syndrome
2024
Background
Prader-Willi syndrome (PWS) is a rare multisystemic hereditary illness. Recombinant human growth hormone (rhGH) therapy is widely recognized as the primary treatment for PWS. This study aimed to examine how different PWS genotypes influence the outcome of rhGH treatment in children with PWS.
Methods
A review was conducted on 146 Chinese children with PWS, genetically classified and monitored from 2017 to 2022. Unaltered and modified generalized estimating equations (GEE) were employed to examine the long-term patterns in primary outcomes (growth metrics) and secondary outcomes (glucose metabolism metrics and insulin-like growth factor-1 (IGF-1)) during rhGH therapy. The study also evaluated the prevalence of hypothyroidism, hip dysplasia, and scoliosis before and after rhGH treatment.
Results
Children with PWS experienced an increase in height/length standard deviation scores (SDS) following rhGH administration. The impact of rhGH therapy on growth measurements was similar in both the deletion and maternal uniparental diploidy (mUPD) cohorts. Nevertheless, the deletion group was more prone to insulin resistance (IR) compared to the mUPD group. No significant variations in growth metrics were noted between the two groups (
P
> 0.05). At year 2.25, the mUPD group showed a reduction in fasting insulin (FINS) levels of 2.14 uIU/ml (95% CI, -4.26, -0.02;
P
= 0.048) and a decrease in homeostasis model assessment of insulin resistance (HOMA-IR) of 0.85 (95% CI, -1.52, -0.17;
P
= 0.014) compared to the deletion group. Furthermore, there was a decrease in the IGF standard deviation scores (SDS) by 2.84 (95% CI, -4.84, -0.84;
P
= 0.005) in the mUPD group during the second year. The frequency of hip dysplasia was higher in the mUPD group compared to the deletion group (
P
< 0.05).
Conclusions
rhGH treatment effectively increased height/length SDS in children with PWS, with similar effects observed in both deletion and mUPD genotypes. Children with mUPD genetype receiving rhGH treatment may experience enhanced therapeutic effects in managing PWS.
Journal Article
Amino acid–functionalized carbon quantum dots for selective detection of Al3+ ions and fluorescence imaging in living cells
2021
Carbon quantum dots (CQDs) are drawing tremendous attention due to their unique photoluminescence property and fascinating functions. Herein, we prepared novel CQDs functionalized with amino acids (AA-CQDs) by a one-pot hydrothermal method for selective detection of Al3+ ions and fluorescence imaging. The prepared AA-CQDs exhibit a novel triple-excitation and single-colour emission for fluorescent property. In addition, the AA-CQDs have a high absolute quantum yield (24.23%) and quantum lifetime (13.29 ns). Moreover, the AA-CQDs exhibit high selectivity and sensitivity for Al3+ by fluorescence enhancement. In pH 7.4 PBS solution, there was a good linear relation between the fluorescence intensity and the concentration of Al3+ in the range of 1–20 μmol L−1; the limit of detection (3σ) was only 0.32 μmol L−1. Furthermore, an AA-CQD probe was also utilized for detection of Al3+ in living cells based on excellent biocompatibility and endocytosis. Based on the concentration of Al3+ ions in cells and apoptosis data, there will be a quick reflect of apoptosis induced by aluminium ions via the fluorescence intensity of the AA-CQD probe. This work will set the stage for developing novel CQD-based biosensors in cell research.
Journal Article
Treatment and Prognosis of Anaplastic Thyroid Carcinoma: A Clinical Study of 50 Cases
2016
Although anaplastic thyroid carcinoma (ATC) is rare, it is one of the most aggressive human cancers. The optimal multimodal therapy policy of ATC is still debated, and a standardized treatment strategy remains to be established. This study aimed to evaluate the management aspect and prognosis of ATC.
The data were analyzed retrospectively for 50 patients with ATC to evaluate the clinical characters, management and factors influencing survival. Survival analysis was performed by Kaplan-Merier method and log-rank test, and multivariate analysis was performed using Cox proportional hazard model.
The 1-year and 2-year overall survival rates (OS) were 48.0% and 26.0% respectively in all patients, with the 2-year OS of 40.0% and 31.0% and 6.3% for stage IVA, IVB and IVC respectively (P <0.05). In stage IVA and IVB patients, combined surgery with radiotherapy improved overall survival, and the 2-year OS were 50.0% and 35.7% respectively in the group with combined surgery with radiotherapy and the group with surgery with only (P <0.05). Postoperative radiotherapy improved local control rate in stage IVA and IVB patients (P <0.05). However, surgery, radiotherapy or chemotherapy could not improve the survival of stage IVC patients. Multivariate analysis showed that distant metastases, surgery, radiotherapy and tumor residue could predict the prognosis.
Combined surgery and radiotherapy could improve overall survival in stage IVA and IVB patients. Patients with ATC have a bad prognosis. Distant metastases, surgery, radiotherapy and tumor residue are the most important factors affecting the prognosis.
Journal Article
The diagnosis and management of mucopolysaccharidosis type II
by
Zou, Chao-Chun
,
Chen, Qing-Qing
,
Mao, Shao-Jia
in
Airway management
,
Births
,
Cardiovascular disease
2024
Mucopolysaccharidosis type II (MPS II) is a rare X-linked recessive inherited lysosomal storage disease. With pathogenic variants of the
IDS
gene, the activity of iduronate-2-sulfatase (IDS) is reduced or lost, causing the inability to degrade glycosaminoglycans (GAGs) in cells and influencing cell function, eventually resulting in multisystemic manifestations, such as a coarse face, dysostosis multiplex, recurrent respiratory tract infections, and hernias. Diagnosing MPS II requires a combination of clinical manifestations, imaging examinations, urinary GAGs screening, enzyme activity, and genetic testing. Currently, symptomatic treatment is the main therapeutic approach. Owing to economic and drug availability issues, only a minority of patients opt for enzyme replacement therapy or hematopoietic stem cell transplantation. The limited awareness of the disease, the lack of widespread detection technology, and uneven economic development contribute to the high rates of misdiagnosis and missed diagnosis in China.
Journal Article