Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Guan-Bin Song"
Sort by:
Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Stiffer Matrix Accelerates Migration of Hepatocellular Carcinoma Cells through Enhanced Aerobic Glycolysis Via the MAPK-YAP Signaling
Increased extracellular matrix (ECM) stiffness and metabolic reprogramming of cancer cells are two fundamental mediators of tumor progression, including hepatocellular carcinoma (HCC). Yet, the correlation between ECM stiffness and excessive aerobic glycolysis in promoting the development of HCC remains unknown. Here, we demonstrated that stiffer ECM promotes HCC cell migration depending on their accelerated aerobic glycolysis. Our results also indicated that stiffer ECM-induced YAP activation plays a major role in promoting aerobic glycolysis of HCC cells. Moreover, we showed that JNK and p38 MAPK signaling are critical for mediating YAP activation in HCC cells. Together, our findings established that the MAPK-YAP signaling cascade that act as a mechanotransduction pathway is essential for promoting HCC cell aerobic glycolysis and migration in response to ECM stiffness.
The transcription factor PBX3 promotes tumor cell growth through transcriptional suppression of the tumor suppressor p53
Pre-B-cell leukemia transcription factor 3 (PBX3) is a member of the PBX family and contains a highly conserved homologous domain. PBX3 is involved in the progression of gastric cancer, colorectal cancer, and prostate cancer; however, the detailed mechanism by which it promotes tumor growth remains to be elucidated. Here, we found that PBX3 silencing induces the expression of the cell cycle regulator p21, leading to an increase in colorectal cancer (CRC) cell apoptosis as well as suppression of proliferation and colony formation. Furthermore, we found that PBX3 is highly expressed in clinical CRC patients, in whom p21 expression is aberrantly low. We found that the regulation of p21 transcription by PBX3 occurs through the upstream regulator of p21 , the tumor suppressor p53, as PBX3 binds to the p53 promoter and suppresses its transcriptional activity. Finally, we revealed that PBX3 regulates tumor growth through regulation of the p53/p21 axis. Taken together, our results not only describe a novel mechanism regarding PBX3-mediated regulation of tumor growth but also provide new insights into the regulatory mechanism of the tumor suppressor p53.
Inhibition of APE1 Expression Enhances the Antitumor Activity of Olaparib in Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that is prone to recurrence and metastasis. Because of the lack of expression of estrogen receptor (ER) and progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) in TNBC, treatment methods are greatly limited. In this study, the proliferation inhibition and apoptosis-inducing effects of PARP1 inhibitors in TNBC breast cancer cells and in vivo xenograft animal models were examined to investigate the molecular role of APE1 in PARP1-targeted therapy. In TNBC patients, the expression of APE1 and PARP1 were positively correlated, and high expression of APE1 and PARP1 was associated with poor survival of TNBC. Our results indicated that knockdown APE1 could increase the sensitivity of olaparib in the treatment of TNBC. In conclusion, the results of this study will not only clarify the molecular role of APE1 in PARP1-targeted therapy for TNBC but also provide a theoretical basis for the future clinical application of targeting APE1 and PARP1 in the treatment of refractory TNBC.
Inhibition of hepatitis B virus replication by small interference RNA induces expression of MICA in HepG2.2.15 cells
Hepatitis B virus (HBV) replicates in most tumor tissues of patients with HBV-associated hepatocellular carcinoma (HCC). In the present study, we have shown that the expression of HBV in the HCC cell lines, HepG2 and Huh7, down-regulated the expression of MHC class I-related molecule A (MICA), a ligand of the NKG2D receptor. Inhibition of HBV expression by small interference RNAs (siRNAs) in HepG2.2.15, a cell line that constitutively expresses HBV, induced up-regulation of MICA. The up-regulation of MICA increased the lysis of HepG2.2.15 cells by NK cells. Our results suggest that HBV compromises the innate immune system in HCC patients and that inhibition of HBV replication by siRNAs may enhance the antitumor immune response.
Comprehensive study of algal blooms variation in Jiaozhou Bay based on google earth engine and deep learning
The Jiaozhou Bay ecosystem, a crucial marine ecosystem in China, has been plagued by frequent harmful algal blooms as due to deteriorating water quality and eutrophication. This study analyzed the temporal and spatial changes of harmful algal blooms in Jiaozhou Bay from 2000 to 2022 using the Floating Algae Index (FAI) calculated from MODIS (2000–2022) and Sentinel-2 (2015–2022) satellite image datasets. The calculation results of the image datasets were compared. The frequency of planktonic algal outbreaks was low and constant until 2017, but has increased annually since then. Algae blooms are most common in the summer and primarily concentrated along the bay’s coast, middle, and mouth, with obvious seasonal and spatial distribution characteristics. Several factors influencing algal outbreaks were identified, including sea surface temperature, wind speed, air pressure, dissolved oxygen, nitrogen and phosphorus ratios, chemical oxygen demand, and petroleum pollutants. Algal bloom outbreaks in Jiaozhou Bay are expected to remain high in 2023. The findings provide crucial information for water quality management and future algal outbreak prediction and prevention in Jiaozhou Bay.
Interventional Effect of Donkey Bone Collagen Peptide Iron Chelate on Cyclophosphamide Induced Immunosuppressive Mice
Immunodeficiency can disrupt normal physiological activity and function. In this study, donkey bone collagen peptide (DP) and its iron chelate (DPI) were evaluated their potential as immunomodulators in cyclophosphamide (Cytoxan®, CTX)-induced Balb/c mice. The femoral tissue, lymphocytes, and serum from groups of mice were subjected to hematoxylin and eosin (H&E) staining, methylthiazolyldiphenyl-tetrazolium bromide (MTT) cell proliferation assays, and enzyme-linked immunosorbent assay (ELISA), respectively. Furthermore, a non-targeted metabolomics analysis based on UPLC–MS/MS and a reverse transcription polymerase chain reaction (RT-qPCR) technology were used to explore the specific metabolic pathways of DPI regulating immunocompromise. The results showed that CTX was able to significantly reduce the proliferative activity of mouse splenic lymphocytes and led to abnormal cytokine expression. After DP and DPI interventions, bone marrow tissue damage was significantly improved. In particular, DPI showed the ability to regulate the levels of immune factors more effectively than Fe2+ and DP. Furthermore, metabolomic analysis in both positive and negative ion modes showed that DPI and DP jointly regulated the levels of 20 plasma differential metabolites, while DPI and Fe2+ jointly regulated 14, and all 3 jointly regulated 10. Fe2+ and DP regulated energy metabolism and pyrimidine metabolism pathways, respectively. In contrast, DPI mainly modulated the purine salvage pathway and the JAK/STAT signaling pathway, which are the key to immune function. Therefore, DPI shows more effective immune regulation than Fe2+ and DP alone, and has good application potential in improving immunosuppression.
Ginsenoside Rg1 Attenuates Cigarette Smoke-Induced Pulmonary Epithelial-Mesenchymal Transition via Inhibition of the TGF-β1/Smad Pathway
Epithelial-mesenchymal transition (EMT) is a process associated with airway remodeling in chronic obstructive pulmonary disease (COPD), which leads to progressive pulmonary destruction. Panax ginseng is a traditional herbal medicine that has been shown to improve pulmonary function and exercise capacity in patients with COPD. Ginsenoside Rg1 is one of the main active components and was shown to inhibit oxidative stress and inflammation. The present study investigated the hypothesis that ginsenoside Rg1 attenuates EMT in COPD rats induced by cigarette smoke (CS) and human bronchial epithelial (HBE) cells exposed to cigarette smoke extract (CSE). Our data showed that CS or CSE exposure increased expression of the mesenchymal marker α-smooth muscle actin (α-SMA) and decreased expression of the epithelial marker epithelial cadherin (E-cad) in both lung tissues and HBE cells, which was markedly suppressed by ginsenoside Rg1. Importantly, CS-induced upregulation of TGF-β1/Smad pathway components, including TGF-β1, TGF-βR1, phospho-Smad2, and phospho-Smad3, was also inhibited by ginsenoside Rg1. Additionally, ginsenoside Rg1 mimicked the effect of SB525334, a TGF-βR1-Smad2/3 inhibitor, on suppression of EMT in CSE-induced HBE cells. Collectively, we concluded that ginsenoside Rg1 alleviates CS-induced pulmonary EMT, in both COPD rats and HBE cells, via inhibition of the TGF-β1/Smad pathway.
Ginsenoside Rg1 Ameliorates Cigarette Smoke-Induced Airway Fibrosis by Suppressing the TGF-β1/Smad Pathway In Vivo and In Vitro
Small airway fibrosis is a key pathological process accompanying chronic obstructive pulmonary disease (COPD) and includes fibroblast/myofibroblast transdifferentiation and excessive extracellular matrix deposition. Ginsenoside Rg1, one of the main active ingredients of Panax ginseng, has been shown to exert an antifibrotic effect in many tissues. However, little is known about the underlying mechanism and whether ginsenoside Rg1 can exert an effect on small airway fibrosis. We investigated the anti-small airway fibrosis effects of ginsenoside Rg1 in human embryonic lung fibroblasts and in COPD rats. We found that ginsenoside Rg1 effectively reduced the degree of pulmonary fibrosis, decreased the expression of α-smooth muscle actin, collagen I, and matrix metalloproteinase 9, and maintained the ratio of matrix metalloproteinase 9 to tissue inhibitor of metalloproteinase 1. Importantly, ginsenoside Rg1 significantly attenuated cigarette smoke extract-induced upregulation of transforming growth factor β1, TGF-β receptor I, phospho-Smad2, and phospho-Smad3. In addition, ginsenoside Rg1 mimicked the effect of SB525334, a TGF-β receptor I-Smad2/3 inhibitor. Collectively, these results suggest that ginsenoside Rg1 may suppress cigarette smoke-induced airway fibrosis in pulmonary fibroblasts and COPD rats by inhibiting the TGF-β1/Smad signaling pathway.
Y-QA31, a novel dopamine D3 receptor antagonist, exhibits antipsychotic-like properties in preclinical animal models of schizophrenia
Aim: To investigate the potential effects of Y-QA31, a novel dopamine D3 receptor antagonist, as an antipsychotic drug. Methods: A panel of radioligand-receptor binding assays was performed to identify the affinities of Y-QA31 for different G protein- coupled receptors. [35S]GTPyS-binding assays and Ca2+ imaging were used to assess its intrinsic activities. The antipsychotic profile of Y-QA31 was characterized in mouse models for the positive symptoms and cognitive deficits of schizophrenia and extrapyramidal side effects with haloperidol and clozapine as positive controls. Results: In vitro, Y-QA31 is a dopamine D3 receptor antagonist that is 186-fold more potent at the D3 receptor than at the D2 receptor. Y-QA31 also exhibits 5-HT+ receptor partial agonist and (xlA adrenoceptor antagonist activities with medium affinity, whereas it exhibits very little affinity for other receptors (100-fold lower than for the D3 receptor). In vivo, Y-QA31 (10-40 mg/kg, po) significantly inhibited MK-8Ol-induced hyperlocomotion and methamphetamine-induced prepulse inhibition disruption in a dose-dependent manner. Y-QA31 also inhibited the avoidance response and methamphetamine-induced hyperlocomotion with potency lower than haloperidol. Y-QA31 was effective in alleviating the MK-801-induced disruption of novel object recognition at a low dose (1 mg,/kg, po). Moreover, Y-QA31 itself did not affect spontaneous locomotion or induce cataleptic response until its dose reached 120 mg/kg. Conclusion: Y-QA31 is a selective D3R antagonist that exhibits antipsychotic effects in some animal models with positive symptoms and cognitive disorder and less extrapyramidal side effects.