Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"Guenthner, Casey J"
Sort by:
Temporal evolution of cortical ensembles promoting remote memory retrieval
2019
Memories of fearful events can last a lifetime. The prelimbic (PL) cortex, a subregion of prefrontal cortex, plays a critical role in fear memory retrieval over time. Most studies have focused on acquisition, consolidation, and retrieval of recent memories, but much less is known about the neural mechanisms of remote memory. Using a new knock-in mouse for activity-dependent genetic labeling (TRAP2), we demonstrate that neuronal ensembles in the PL cortex are dynamic. PL neurons TRAPed during later memory retrievals are more likely to be reactivated and make larger behavioral contributions to remote memory retrieval compared to those TRAPed during learning or early memory retrieval. PL activity during learning is required to initiate this time-dependent reorganization in PL ensembles underlying memory retrieval. Finally, while neurons TRAPed during earlier and later retrievals have similar broad projections throughout the brain, PL neurons TRAPed later have a stronger functional recruitment of cortical targets.DeNardo et al. characterize TRAP2, which allows genetic access to neurons based on their activity, and use it to show that neuronal ensembles in prelimbic cortex for remote fear memory undergo dynamic changes during the first 14 days after learning.
Journal Article
Genetic tagging of active neurons in auditory cortex reveals maternal plasticity of coding ultrasonic vocalizations
2018
Cortical neurons are often functionally heterogeneous even for molecularly defined subtypes. In sensory cortices, physiological responses to natural stimuli can be sparse and vary widely even for neighboring neurons. It is thus difficult to parse out circuits that encode specific stimuli for further experimentation. Here, we report the development of a Cre-reporter mouse that allows recombination for cellular labeling and genetic manipulation, and use it with an activity-dependent
Fos
-CreER
T2
driver to identify functionally active circuits in the auditory cortex. In vivo targeted patch recordings validate our method for neurons responding to physiologically relevant natural sounds such as pup wriggling calls and ultrasonic vocalizations (USVs). Using this system to investigate cortical responses in postpartum mothers, we find a transient recruitment of neurons highly responsive to USVs. This subpopulation of neurons has distinct physiological properties that improve the coding efficiency for pup USV calls, implicating it as a unique signature in parental plasticity.
Fos-CreER knock-in mice enable tagging of neurons that are activated within a distinct time window. Here, the authors develop a Cre reporter mouse with low baseline activation and use it to reveal the specific coding properties of auditory cortex neurons that are activated by pup calls in both naive mice and mothers.
Journal Article
Circadian Rhythms of PER2::LUC in Individual Primary Mouse Hepatocytes and Cultures
2014
Hepatocytes, the parenchymal cells of the liver, express core clock genes, such as Period2 and Cryptochrome2, which are involved in the transcriptional/translational feedback loop of the circadian clock. Whether or not the liver is capable of sustaining rhythms independent of a central pacemaker is controversial. Whether and how circadian information may be shared among cells in the liver in order to sustain oscillations is currently unknown.
In this study we isolated primary hepatocytes from transgenic Per2(Luc) mice and used bioluminescence as a read-out of the state of the circadian clock. Hepatocytes cultured in a collagen gel sandwich configuration exhibited persistent circadian rhythms for several weeks. The amplitude of the rhythms damped, but medium changes consistently reset the phase and amplitude of the cultures. Cry2(-/-) Per2(Luc) cells oscillated robustly and expressed a longer period. Co-culturing with wildtype cells did not significantly shorten the period, indicating that coupling among hepatocytes is insufficient to synchronize cells with significantly differing periods. However, spatial patterns revealed by cellular imaging of wildtype cultures provided evidence of weak local coupling among the hepatocytes.
Our results with primary hepatocyte cultures demonstrate that cultured hepatocytes are weakly coupled. While this coupling is not sufficient to sustain global synchrony, it does increase local synchrony, which may stabilize the circadian rhythms of peripheral oscillators, such as the liver, against noise in the entraining signals.
Journal Article
Temporal Evolution of Cortical Ensembles Promoting Remote Memory Retrieval
by
Guenthner, Casey J
,
Adams, Eliza L
,
Friedmann, Drew
in
Animal models
,
Cortex (temporal)
,
Fear conditioning
2018
Studies of amnesic patients and animal models support a systems consolidation model, which posits that explicit memories formed in hippocampus are transferred to cortex over time1-6. Prelimbic cortex (PL), a subregion of the medial prefrontal cortex, is required for the expression of learned fear memories from hours after learning until weeks later7-12. While some studies suggested that prefrontal cortical neurons active during learning are required for memory retrieval13-15, others provided evidence for ongoing cortical circuit reorganization during memory consolidation10,16,17. It has been difficult to causally relate the activity of cortical neurons during learning or recent memory retrieval to their function in remote memory, in part due to a lack of tools18. Here we show that a new version of 'targeted recombination in active populations', TRAP2, has enhanced efficiency over the past version, providing brain-wide access to neurons activated by a particular experience. Using TRAP2, we accessed PL neurons activated during fear conditioning or 1-, 7-, or 14-day memory retrieval, and assessed their contributions to 28-day remote memory. We found that PL neurons TRAPed at later retrieval times were more likely to be reactivated during remote memory retrieval, and more effectively promoted remote memory retrieval. Furthermore, reducing PL activity during learning blunted the ability of TRAPed PL neurons to promote remote memory retrieval. Finally, a series of whole-brain analyses identified a set of cortical regions that were densely innervated by memory-TRAPed PL neurons and preferentially activated by PL neurons TRAPed during 14-day retrieval, and whose activity co-varied with PL and correlated with memory specificity. These findings support a model in which PL ensembles underlying remote memory undergo dynamic changes during the first two weeks after learning, which manifest as increased functional recruitment of cortical targets.