Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"Guerrero, Sergio Adrián"
Sort by:
Nonphosphorylating Glyceraldehyde-3-Phosphate Dehydrogenase Is Phosphorylated in Wheat Endosperm at Serine-404 by an SNF1-Related Protein Kinase Allosterically Inhibited by Ribose-5-Phosphate
by
Iglesias, Alberto Álvaro
,
Bustos, Diego Martín
,
Piattoni, Claudia Vanesa
in
Allosteric Regulation
,
Allosteric Regulation - drug effects
,
Amino Acid Sequence
2011
Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (np-Ga3PDHase) is a cytosolic unconventional glycolytic enzyme of plant cells regulated by phosphorylation in heterotrophic tissues. After interaction with 14-3-3 proteins, the phosphorylated enzyme becomes less active and more sensitive to regulation by adenylates and inorganic pyrophosphate. Here, we acknowledge that in wheat (Triticum aestivum), np-GaSPDHase is specifically phosphorylated by the SnRK (SNF1-related) protein kinase family. Interestingly, only the kinase present in heterotrophic tissues (endosperm and shoots, but not in leaves) was found active. The specific SnRK partially purified from endosperm exhibited a requirement for Mg²⁺ or Mn²⁺ (being Ca²⁺ independent), having a molecular mass of approximately 200 kD. The kinase also phosphorylated standard peptides SAMS, AMARA, and SP46, as well as endogenous sucrose synthase, results suggesting that it could be a member of the SnRKl subfamily. Concurrently, the partially purified wheat SnRK was recognized by antibodies raised against a peptide conserved between SnRKls from sorghum (Sorghum bicolor) and maize (Zea mays) developing seeds. The wheat kinase was allosterically inhibited by ribose-5-phosphate and, to a lesser extent, by fructose-1,6-bisphosphate and 3-phosphoglycerate, while glucose-6-phosphate (the main effector of spinach [Spinacia olerácea] leaves, SnRKl) and trehalose-6-phosphate produced little or no effect. Results support a distinctive allosteric regulation of SnRKl present in photosynthetic or heterotrophic plant tissues. After in silico analysis, we constructed two np-Ga3PDHase mutants, S404A and S447A, identifying serine-404 as the target of phosphorylation. Results suggest that both np-Ga3PDHase and the specific kinase could be under control, critically affecting the metabolic scenario involving carbohydrates and reducing power partition and storage in heterotrophic plant cells.
Journal Article
Euglena International Network (EIN): Driving euglenoid biotechnology for the benefit of a challenged world
by
Suzuki, Kengo
,
Saville, Barry J.
,
Zimba, Paul V.
in
Agricultural and Biological Sciences (all)
,
Biochemistry, Genetics and Molecular Biology (all)
,
Biodiesel fuels
2022
Euglenoids (Euglenida) are unicellular flagellates possessing exceptionally wide geographical and ecological distribution. Euglenoids combine a biotechnological potential with a unique position in the eukaryotic tree of life. In large part these microbes owe this success to diverse genetics including secondary endosymbiosis and likely additional sources of genes. Multiple euglenoid species have translational applications and show great promise in production of biofuels, nutraceuticals, bioremediation, cancer treatments and more exotically as robotics design simulators. An absence of reference genomes currently limits these applications, including development of efficient tools for identification of critical factors in regulation, growth or optimization of metabolic pathways. The Euglena International Network (EIN) seeks to provide a forum to overcome these challenges. EIN has agreed specific goals, mobilized scientists, established a clear roadmap (Grand Challenges), connected academic and industry stakeholders and is currently formulating policy and partnership principles to propel these efforts in a coordinated and efficient manner.
Journal Article
Nonphosphorylating Glyceraldehyde-3-Phosphate Dehydrogenase Is Phosphorylated in Wheat Endosperm at Serine-404 by an SNF1-Related Protein Kinase Allosterically Inhibited by Ribose-5-Phosphate1WOA
by
Iglesias, Alberto Álvaro
,
Guerrero, Sergio Adrián
,
Bustos, Diego Martín
in
Carbohydrates
,
Dehydrogenase
,
Leaves
2011
Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (np-Ga3PDHase) is a cytosolic unconventional glycolytic enzyme of plant cells regulated by phosphorylation in heterotrophic tissues. After interaction with 14-3-3 proteins, the phosphorylated enzyme becomes less active and more sensitive to regulation by adenylates and inorganic pyrophosphate. Here, we acknowledge that in wheat (Triticum aestivum), np-Ga3PDHase is specifically phosphorylated by the SnRK (SNF1-related) protein kinase family. Interestingly, only the kinase present in heterotrophic tissues (endosperm and shoots, but not in leaves) was found active. The specific SnRK partially purified from endosperm exhibited a requirement for Mg(2+) or Mn(2+) (being Ca(2+) independent), having a molecular mass of approximately 200 kD. The kinase also phosphorylated standard peptides SAMS, AMARA, and SP46, as well as endogenous sucrose synthase, results suggesting that it could be a member of the SnRK1 subfamily. Concurrently, the partially purified wheat SnRK was recognized by antibodies raised against a peptide conserved between SnRK1s from sorghum (Sorghum bicolor) and maize (Zea mays) developing seeds. The wheat kinase was allosterically inhibited by ribose-5-phosphate and, to a lesser extent, by fructose-1,6-bisphosphate and 3-phosphoglycerate, while glucose-6-phosphate (the main effector of spinach [Spinacia oleracea] leaves, SnRK1) and trehalose-6-phosphate produced little or no effect. Results support a distinctive allosteric regulation of SnRK1 present in photosynthetic or heterotrophic plant tissues. After in silico analysis, we constructed two np-Ga3PDHase mutants, S404A and S447A, identifying serine-404 as the target of phosphorylation. Results suggest that both np-Ga3PDHase and the specific kinase could be under control, critically affecting the metabolic scenario involving carbohydrates and reducing power partition and storage in heterotrophic plant cells.
Journal Article
Comparative Cytocompatibility and Mineralization Potential of Bio-C Sealer and TotalFill BC Sealer
by
Pecci-Lloret, Miguel R.
,
Forner, Leopoldo
,
Rodríguez-Lozano, Francisco Javier
in
Biocompatibility
,
Cell adhesion & migration
,
Chemical elements
2019
The aim of this study was to investigate the cytocompatibility and mineralization potential of two premixed hydraulic endodontic sealers compared with an epoxy resin-based root canal sealer. The cellular responses and mineralization capacity were studied in human periodontal ligament stem cells (hPDLSCs) that were exposed to premixed hydraulic sealers, Bio-C Sealer (Angelus, Londrína, PR, Brazil), TotalFill BC Sealer (FKG Dentaire SA, La-Chaux-de-fonds, Switzerland) and an epoxy resin-based material, AH Plus (Dentsply De Trey, Konstanz, Germany). Non-exposed cultures served as the control. The endodontic sealers were assessed using scanning electron microscopy (SEM) and energy dispersive X-ray microanalysis (EDX). Statistical analyses were done using Analisis of Variance (ANOVA), with Bonferroni adjusted pairwise comparison (p = 0.05). AH Plus reduced cell viability and cell migration, whereas increased cell viability and cell migration were observed in the Bio-C Sealer and the TotalFill BC Sealer (p < 0.05). The lowest cell attachment and spreading were observed for all concentrations of AH Plus, whereas the highest were observed for TotalFill BC Sealer. At the end of 21 days, only the Bio-C Sealer and the TotalFill BC Sealer supported matrix mineralization (p < 0.05). Additionally, SEM-EDX revealed high content of calcium, oxygen, and silicon in the Bio-C Sealer and the TotalFill BC Sealer. Based on the results from this study, Bio-C Sealer and TotalFill BC Sealer demonstrated better cytocompatibility in terms of cell viability, migration, cell morphology, cell attachment, and mineralization capacity than AH Plus.
Journal Article
Comparative Surface Morphology, Chemical Composition, and Cytocompatibility of Bio-C Repair, Biodentine, and ProRoot MTA on hDPCs
by
Forner, Leopoldo
,
Rodríguez-Lozano, Francisco Javier
,
Ghilotti, James
in
Assaying
,
Biocompatibility
,
Biological effects
2020
Biocompatibility is an essential property for any vital pulp material that may interact with the dental pulp tissues. Accordingly, this study aimed to compare the chemical composition and ultrastructural morphology of Biodentine (Septodont, Saint Maur-des-Fosses, France), ProRoot MTA (Dentsply Tulsa Dental Specialties, Johnson City, TN, USA), and Bio-C Repair (Angelus, Londrina, PR, Brazil), as well as their biological effects on human dental pulp cells. Chemical element characterization of the materials was undertaken using scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX). The cytotoxicity was assessed by analyzing the cell viability (MTT assay), cell morphology (immunofluorescence assay), and cell attachment (flow cytometry assay). The results were statistically analyzed using ANOVA and Tukey’s test (p < 0.05). EDX revealed that ProRoot MTA and Biodentine were mostly composed of calcium, carbon, and oxygen (among others), whereas Bio-C Repair evidenced a low concentration of calcium and the highest concentration of zirconium. SEM showed adequate attachment of human dental pulp cells (hDPCS) to vital pulp materials and cytoskeletal alterations were not observed in the presence of material eluates. Remarkably, the undiluted Biodentine group showed higher viability than the control group cells (without eluates) at 24 h, 48 h, and 72 h (p < 0.001). Based on the evidence derived from an in vitro cellular study, it was concluded that Bio-C Repair showed excellent cytocompatibility that was similar to Biodentine and ProRoot MTA.
Journal Article
Mexican Biobank advances population and medical genomics of diverse ancestries
2023
Latin America continues to be severely underrepresented in genomics research, and fine-scale genetic histories and complex trait architectures remain hidden owing to insufficient data
1
. To fill this gap, the Mexican Biobank project genotyped 6,057 individuals from 898 rural and urban localities across all 32 states in Mexico at a resolution of 1.8 million genome-wide markers with linked complex trait and disease information creating a valuable nationwide genotype–phenotype database. Here, using ancestry deconvolution and inference of identity-by-descent segments, we inferred ancestral population sizes across Mesoamerican regions over time, unravelling Indigenous, colonial and postcolonial demographic dynamics
2
–
6
. We observed variation in runs of homozygosity among genomic regions with different ancestries reflecting distinct demographic histories and, in turn, different distributions of rare deleterious variants. We conducted genome-wide association studies (GWAS) for 22 complex traits and found that several traits are better predicted using the Mexican Biobank GWAS compared to the UK Biobank GWAS
7
,
8
. We identified genetic and environmental factors associating with trait variation, such as the length of the genome in runs of homozygosity as a predictor for body mass index, triglycerides, glucose and height. This study provides insights into the genetic histories of individuals in Mexico and dissects their complex trait architectures, both crucial for making precision and preventive medicine initiatives accessible worldwide.
Nationwide genomic biobank in Mexico unravels demographic history and complex trait architecture from 6,057 individuals.
Journal Article
Biological Effects of New Hydraulic Materials on Human Periodontal Ligament Stem Cells
2019
Background: The aim of this study was: to evaluate the biological properties of new hydraulic materials: Bio-C Repair and Bio-C Sealer. Methods: Periodontal ligament stem cells were exposed to several dilutions of Bio-C Repair and Bio-C Sealer. The ion release profile and pH were determined. Metabolic activity, cell migration and cell survival were assessed using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), wound-healing assays and Annexin assays, respectively. Cells were cultured in direct contact with the surface of each material. These were then analyzed via scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). Statistical differences were assessed using a two-way ANOVA (α < 0.05). Results: Similar pH was observed in these cements. Bio-C Sealer released significantly more Ca and Si ions (p < 0.05) in comparison with Bio-C Repair. Undiluted Bio-C Sealer induced a significant reduction on cellular viability, cell survival and cell migration when compared to the control (p < 0.05). Moreover, SEM showed abundant cells adhered on Bio-C Repair and a moderate number of cells attached on Bio-C Sealer. Finally, EDX analysis identified higher percentages of Ca and O in the case of Bio-C repair than with Bio-C sealer, while other elements such as Zr and Si were more abundant in Bio-C sealer. Conclusions: Bio-C Repair displayed higher cell viability, cell adhesion and migration rates than Bio-C Sealer.
Journal Article
In Vitro Effect of Putty Calcium Silicate Materials on Human Periodontal Ligament Stem Cells
by
Pecci-Lloret, Miguel R.
,
Forner, Leopoldo
,
Rodríguez-Lozano, Francisco Javier
in
apical surgery
,
biocompatibility
,
endodontic
2020
New bioactive materials have been developed for retrograde root filling. These materials come into contact with vital tissues and facilitate biomineralization and apical repair. The objective of this study was to evaluate the cytocompatibility and bioactivity of two bioactive cements, Bio-C Repair (Angelus, Londrina, Pr, Brazil) and TotalFill BC RRM putty (FGK, Dentaire SA, La-Chaux-de-fonds, Switzerland). The biological properties in human periodontal ligament stem cells (hPDLSCs) that were exposed to Bio-C Repair and TotalFill BC RRM putty were studied. Cell viability, migration, and cell adhesion were analyzed. Moreover, qPCR and mineralization assay were performed to evaluate the bioactivity potential of these cements. The results were statistically analyzed using ANOVA and the Tukey test (p < 0.05). It was observed that cell viability and cell migration in Bio-C Repair and TotalFill BC RRM putty were similar to the control without statistically significant differences, except at 72 h when TotalFill BC RRM putty was slightly lower (p < 0.05). Excellent cell adhesion and morphology were observed with both Bio-C Repair and TotalFill BC RRM putty. Both cements promoted the osteo- and cementogenic differentiation of hPDLSCs. These results suggest that Bio-C Repair and TotalFill BC RRM putty are biologically appropriate materials to be used as retrograde obturation material.
Journal Article
Phenotypic Characterization of CD4+ T Lymphocytes in Periportal Fibrosis Secondary to Schistosomiasis
2021
Schistosomiasis is a parasitic disease that affects about 166 million people around the world. It is estimated that 5%–10% of individuals with schistosomiasis develop severe forms of the disease, which are characterized by pulmonary hypertension, ascites, periportal fibrosis, and other significant complications. The chronic phase of the disease is associated with a Th2 type immune response, but evidence also suggests there are roles for Th1 and Th17 in the development of severe disease. The aim of this study was to evaluate the CD4 + T lymphocyte profile of patients with different degrees of periportal fibrosis secondary to schistosomiasis. These individuals had been treated for schistosomiasis, but since they live in a S. mansoni endemic area, they are at risk of reinfection. They were evaluated in relation to the degree of periportal fibrosis and classified into three groups: without fibrosis or with incipient fibrosis (WF/IFNE), n=12, possible periportal fibrosis/periportal fibrosis, n=13, and advanced periportal fibrosis/advanced periportal fibrosis with portal hypertension, n=4. We observed in the group without fibrosis a balance between the low expression of Th2 cytokines and high expression of T reg cells. As has already been described in the literature, we found an increase of the Th2 cytokines IL-4, IL-5, and IL-13 in the group with periportal fibrosis. In addition, this group showed higher expression of IL-17 and IL-10 but lower IL-10/IL-13 ratio than patients in the WF/IFNE group. Cells from individuals who present any level of fibrosis expressed more TGF-β compared to the WF/IFNE group and a positive correlation with left lobe enlargement and portal vein wall thickness. There was a negative correlation between IL-17 and the thickness of the portal vein wall, but more studies are necessary in order to explore the possible protective role of this cytokine. Despite the fibrosis group having presented a higher expression of pro-fibrotic molecules compared to WF/IFNE patients, it seems there is a regulation through IL-10 and T reg cells that is able to maintain the low morbidity of this group.
Journal Article
Bacillus licheniformis M2-7 Decreases Ochratoxin A Concentrations in Coffee Beans During Storage
by
Salgado-Souto, Sergio Adrián
,
Toledo-Hernández, Erubiel
,
Álvarez-Fitz, Patricia
in
Antagonism
,
Bacillus licheniformis
,
Bacteria
2024
Microbial contamination of coffee beans arises from various factors such as harvesting, handling, and storage practices, during which ochratoxin A (OTA)-producing fungi develop and proliferate. The presence of elevated concentrations of OTA poses a serious health risk to coffee consumers. Therefore, the implementation of a post-harvest treatment involving the use of bacteria known to antagonize OTA-producing fungi constitutes a safe alternative for reducing or eliminating the toxin’s concentration in coffee beans. In this study, coffee beans (Coffea arabica L.) were inoculated with Bacillus licheniformis M2-7, after which we monitored fungal growth, in vitro antagonism, and OTA concentration. Our findings demonstrated that coffee beans inoculated with this bacterial strain exhibited a significant decrease in fungal populations belonging to the genera Aspergillus and Penicillium, which are known to produce OTA. Moreover, strain M2-7 decreased the growth rates of these fungi from 67.8% to 95.5% (P < 0.05). Similarly, inoculation with B. licheniformis strain M2-7 effectively reduced the OTA concentration from 24.35 ± 1.61 to 5.52 ± 1.69 µg/kg (P < 0.05) in stored coffee beans. These findings suggest that B. licheniformis M2-7 holds promise as a potential post-harvest treatment for coffee beans in storage, as it effectively inhibits the proliferation of OTA-producing fungi and lowers the toxin’s concentration.
Journal Article