Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
16
result(s) for
"Guest, Johnathan D."
Sort by:
Molecular and phenotypic characteristics of RSV infections in infants during two nirsevimab randomized clinical trials
by
Mankad, Vaishali S.
,
Sparklin, Benjamin
,
Ahani, Bahar
in
13/1
,
631/250/2152/2153/1291
,
692/308/3187
2023
Nirsevimab is a monoclonal antibody that binds to the respiratory syncytial virus (RSV) fusion protein. During the Phase 2b (NCT02878330) and MELODY (NCT03979313) clinical trials, infants received one dose of nirsevimab or placebo before their first RSV season. In this pre-specified analysis, isolates from RSV infections were subtyped, sequenced and analyzed for nirsevimab binding site substitutions; subsequently, recombinant RSVs were engineered for microneutralization susceptibility testing. Here we show that the frequency of infections caused by subtypes A and B is similar across and within the two trials. In addition, RSV A had one and RSV B had 10 fusion protein substitutions occurring at >5% frequency. Notably, RSV B binding site substitutions were rare, except for the highly prevalent I206M:Q209R, which increases nirsevimab susceptibility; RSV B isolates from two participants had binding site substitutions that reduce nirsevimab susceptibility. Overall, >99% of isolates from the Phase 2b and MELODY trials retained susceptibility to nirsevimab.
Nirsevimab binds the respiratory syncytial virus (RSV) fusion protein and has been tested for RSV prevention in clinical trials. Here, the authors analyse RSV from infections and show that binding site substitutions are rare and that over 99% of isolates remain susceptible to nirsevimab.
Journal Article
Structural assessment of HLA-A2-restricted SARS-CoV-2 spike epitopes recognized by public and private T-cell receptors
by
Mariuzza, Roy A.
,
Yin, Rui
,
Guest, Johnathan D.
in
631/250/2152/1566
,
631/326/596/4130
,
631/535/1266
2022
T cells play a vital role in combatting SARS-CoV-2 and forming long-term memory responses. Whereas extensive structural information is available on neutralizing antibodies against SARS-CoV-2, such information on SARS-CoV-2-specific T-cell receptors (TCRs) bound to their peptide–MHC targets is lacking. Here we determine the structures of a public and a private TCR from COVID-19 convalescent patients in complex with HLA-A2 and two SARS-CoV-2 spike protein epitopes (YLQ and RLQ). The structures reveal the basis for selection of particular TRAV and TRBV germline genes by the public but not the private TCR, and for the ability of the TCRs to recognize natural variants of RLQ but not YLQ. Neither TCR recognizes homologous epitopes from human seasonal coronaviruses. By elucidating the mechanism for TCR recognition of an immunodominant yet variable epitope (YLQ) and a conserved but less commonly targeted epitope (RLQ), this study can inform prospective efforts to design vaccines to elicit pan-coronavirus immunity.
Structural immunology is critical in understanding the interplay between the immune response and the infective agent but such studies in T cells and SARS-CoV-2 lag behind those of antibodies and B-cell receptors. Here the authors assess recognition of SARS-CoV-2 spike epitopes and their natural variants by public and private T cell receptors.
Journal Article
Structure-Based and Rational Design of a Hepatitis C Virus Vaccine
by
Guest, Johnathan D.
,
Pierce, Brian G.
in
Animals
,
Antibodies, Neutralizing - immunology
,
antigenic variation
2021
A hepatitis C virus (HCV) vaccine is a critical yet unfulfilled step in addressing the global disease burden of HCV. While decades of research have led to numerous clinical and pre-clinical vaccine candidates, these efforts have been hindered by factors including HCV antigenic variability and immune evasion. Structure-based and rational vaccine design approaches have capitalized on insights regarding the immune response to HCV and the structures of antibody-bound envelope glycoproteins. Despite successes with other viruses, designing an immunogen based on HCV glycoproteins that can elicit broadly protective immunity against HCV infection is an ongoing challenge. Here, we describe HCV vaccine design approaches where immunogens were selected and optimized through analysis of available structures, identification of conserved epitopes targeted by neutralizing antibodies, or both. Several designs have elicited immune responses against HCV in vivo, revealing correlates of HCV antigen immunogenicity and breadth of induced responses. Recent studies have elucidated the functional, dynamic and immunological features of key regions of the viral envelope glycoproteins, which can inform next-generation immunogen design efforts. These insights and design strategies represent promising pathways to HCV vaccine development, which can be further informed by successful immunogen designs generated for other viruses.
Journal Article
Structure of engineered hepatitis C virus E1E2 ectodomain in complex with neutralizing antibodies
by
Mariuzza, Roy A.
,
Fuerst, Thomas R.
,
Wang, Ruixue
in
101/28
,
631/326/590/2294
,
631/326/596/1905
2023
Hepatitis C virus (HCV) is a major global health burden as the leading causative agent of chronic liver disease and hepatocellular carcinoma. While the main antigenic target for HCV-neutralizing antibodies is the membrane-associated E1E2 surface glycoprotein, the development of effective vaccines has been hindered by complications in the biochemical preparation of soluble E1E2 ectodomains. Here, we present a cryo-EM structure of an engineered, secreted E1E2 ectodomain of genotype 1b in complex with neutralizing antibodies AR4A, HEPC74, and IGH520. Structural characterization of the E1 subunit and C-terminal regions of E2 reveal an overall architecture of E1E2 that concurs with that observed for non-engineered full-length E1E2. Analysis of the AR4A epitope within a region of E2 that bridges between the E2 core and E1 defines the structural basis for its broad neutralization. Our study presents the structure of an E1E2 complex liberated from membrane via a designed scaffold, one that maintains all essential structural features of native E1E2. The study advances the understanding of the E1E2 heterodimer structure, crucial for the rational design of secreted E1E2 antigens in vaccine development.
HCV vaccine development has been challenged by difficulties in the biochemical preparation of E1E2 ectodomains. Here, the authors structurally characterize an engineered soluble E1E2 ectodomain complexed with broadly neutralizing antibodies, revealing it adopts a native fold amenable for vaccine design.
Journal Article
Broadly neutralizing antibodies from an individual that naturally cleared multiple hepatitis C virus infections uncover molecular determinants for E2 targeting and vaccine design
2019
Cumulative evidence supports a role for neutralizing antibodies contributing to spontaneous viral clearance during acute hepatitis C virus (HCV) infection. Information on the timing and specificity of the B cell response associated with clearance is crucial to inform vaccine design. From an individual who cleared three sequential HCV infections with genotypes 1b, 1a and 3a strains, respectively, we employed peripheral B cells to isolate and characterize neutralizing human monoclonal antibodies (HMAbs) to HCV after the genotype 1 infections. The majority of isolated antibodies, designated as HMAbs 212, target conformational epitopes on the envelope glycoprotein E2 and bound broadly to genotype 1-6 E1E2 proteins. Further, some of these antibodies showed neutralization potential against cultured genotype 1-6 viruses. Competition studies with defined broadly neutralizing HCV HMAbs to epitopes in distinct clusters, designated antigenic domains B, C, D and E, revealed that the selected HMAbs compete with B, C and D HMAbs, previously isolated from subjects with chronic HCV infections. Epitope mapping studies revealed domain B and C specificity of these HMAbs 212. Sequential serum samples from the studied subject inhibited the binding of HMAbs 212 to autologous E2 and blocked a representative domain D HMAb. The specificity of this antibody response appears similar to that observed during chronic infection, suggesting that the timing and affinity maturation of the antibody response are the critical determinants in successful and repeated viral clearance. While additional studies should be performed for individuals with clearance or persistence of HCV, our results define epitope determinants for antibody E2 targeting with important implications for the development of a B cell vaccine.
Journal Article
Structural and energetic profiling of SARS-CoV-2 receptor binding domain antibody recognition and the impact of circulating variants
by
Yin, Rui
,
Guest, Johnathan D.
,
Taherzadeh, Ghazaleh
in
Antibodies
,
Antigen-antibody reactions
,
Antigenic determinants
2021
The SARS-CoV-2 pandemic highlights the need for a detailed molecular understanding of protective antibody responses. This is underscored by the emergence and spread of SARS-CoV-2 variants, including Alpha (B.1.1.7) and Delta (B.1.617.2), some of which appear to be less effectively targeted by current monoclonal antibodies and vaccines. Here we report a high resolution and comprehensive map of antibody recognition of the SARS-CoV-2 spike receptor binding domain (RBD), which is the target of most neutralizing antibodies, using computational structural analysis. With a dataset of nonredundant experimentally determined antibody-RBD structures, we classified antibodies by RBD residue binding determinants using unsupervised clustering. We also identified the energetic and conservation features of epitope residues and assessed the capacity of viral variant mutations to disrupt antibody recognition, revealing sets of antibodies predicted to effectively target recently described viral variants. This detailed structure-based reference of antibody RBD recognition signatures can inform therapeutic and vaccine design strategies.
Journal Article
Computational Modeling of Hepatitis C Virus Envelope Glycoprotein Structure and Recognition
2018
Hepatitis C virus (HCV) is a major global health concern, and though therapeutic options have improved, no vaccine is available despite decades of research. As HCV can rapidly mutate to evade the immune response, an effective HCV vaccine must rely on identification and characterization of sites critical for broad immune protection and viral neutralization. This knowledge depends on structural and mechanistic insights of the E1 and E2 envelope glycoproteins, which assemble as a heterodimer on the surface of the virion, engage coreceptors during host cell entry, and are the primary targets of antibodies. Due to the challenges in determining experimental structures, structural information on E1 and E2 and their interaction is relatively limited, providing opportunities to model the structures, interactions, and dynamics of these proteins. This review highlights efforts to model the E2 glycoprotein structure, the assembly of the functional E1E2 heterodimer, the structure and binding of human coreceptors, and recognition by key neutralizing antibodies. We also discuss a comparison of recently described models of full E1E2 heterodimer structures, a simulation of the dynamics of key epitope sites, and modeling glycosylation. These modeling efforts provide useful mechanistic hypotheses for further experimental studies of HCV envelope assembly, recognition, and viral fitness, and underscore the benefit of combining experimental and computational modeling approaches to reveal new insights. Additionally, computational design approaches have produced promising candidates for epitope-based vaccine immunogens that specifically target key epitopes, providing a possible avenue to optimize HCV vaccines versus using native glycoproteins. Advancing knowledge of HCV envelope structure and immune recognition is highly applicable toward the development of an effective vaccine for HCV and can provide lessons and insights relevant to modeling and characterizing other viruses.
Journal Article
SARS-CoV-2 RBD Scaffolded by AP205 or TIP60 Nanoparticles and Delivered as mRNA Elicits Robust Neutralizing Antibody Responses
2025
Background/Objectives: SARS-CoV-2 vaccine candidates comprising the receptor binding domain (RBD) of the spike protein have been shown to confer protection against infection. Previous research evaluating vaccine candidates with SARS-CoV-2 RBD fused to ferritin (RBD-ferritin) and other scaffolds suggested that multimeric assemblies of RBD can enhance antigen presentation to improve the potency and breadth of immune responses. Though RBDs directly fused to a self-assembling scaffold can be delivered as messenger RNA (mRNA) formulated with lipid nanoparticles (LNPs), reports of SARS-CoV-2 vaccine candidates that combine these approaches remain scarce. Methods: Here, we designed RBD fused to AP205 or TIP60 self-assembling nanoparticles following a search of available structures focused on several scaffold properties. RBD-AP205 and RBD-TIP60 were tested for antigenicity following transfection and for immunogenicity and neutralization potency when delivered as mRNA in mice, with RBD-ferritin as a direct comparator. Results: All scaffolded RBD constructs were readily secreted to transfection supernatant and showed antigenicity in ELISA, though clear heterogeneity in assembly was observed. RBD-AP205 and RBD-TIP60 also exhibited robust antibody binding and neutralization titers in mice that were comparable to those elicited by RBD-ferritin or a full-length membrane-bound spike. Conclusions: These data suggest that AP205 and TIP60 can present RBD as effectively as ferritin and induce similar immune responses. By describing additional scaffolds for multimeric display that accommodate mRNA delivery platforms, this work can provide new tools for future vaccine design efforts.
Journal Article
Induction of broadly neutralizing antibodies using a secreted form of the hepatitis C virus E1E2 heterodimer as a vaccine candidate
2022
Hepatitis C virus (HCV) is a global disease burden, and a preventive vaccine is needed to control or eradicate the virus. Despite the advent of effective antiviral therapy, this treatment is not accessible to many patients and does not prevent reinfection, making chronic hepatitis C an ongoing global health problem. Thus, development of a prophylactic vaccine will represent a significant step toward global eradication of HCV. HCV exhibits high genetic variability, which leads frequently to immune escape. However, a considerable challenge faced in HCV vaccine development is designing an antigen that elicits broadly neutralizing antibodies. Here, we characterized the immunogenicity of a vaccine based on a soluble, secreted form of the E1E2 envelope heterodimer (sE1E2.LZ). Sera from mice immunized with sE1E2.LZ exhibited an anti-E1E2–specific response comparable to mice immunized with membrane-bound E1E2 (mbE1E2) or a soluble E2 ectodomain (sE2). In competition-inhibition ELISA using antigenic domain-specific neutralizing and nonneutralizing antibodies, sera from sE1E2.LZ-immunized mice showed nearly identical or stronger competition toward neutralizing antibodies when compared with mbE1E2. In contrast, sera from mice immunized with sE2, and to a lesser extent mbE1E2, competed more effectively with nonneutralizing antibodies. An assessment of neutralization activity using both HCV pseudoparticles and cell culture–derived infectious HCV showed that immunization with sE1E2.LZ elicited the broadest neutralization activity of the three antigens, and sE1E2.LZ induced neutralization activity against all genotypes. These results indicate that our native-like soluble glycoprotein design, sE1E2.LZ, induces broadly neutralizing antibodies and serves as a promising vaccine candidate for further development.
Journal Article