Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
41 result(s) for "Guillaume Carissimo"
Sort by:
Two linear epitopes on the SARS-CoV-2 spike protein that elicit neutralising antibodies in COVID-19 patients
Given the ongoing SARS-CoV-2 pandemic, identification of immunogenic targets against the coronavirus spike glycoprotein will provide crucial advances towards the development of sensitive diagnostic tools and potential vaccine candidate targets. In this study, using pools of overlapping linear B-cell peptides, we report two IgG immunodominant regions on SARS-CoV-2 spike glycoprotein that are recognised by sera from COVID-19 convalescent patients. Notably, one is specific to SARS-CoV-2, which is located in close proximity to the receptor binding domain. The other region, which is localised at the fusion peptide, could potentially function as a pan-SARS target. Functionally, antibody depletion assays demonstrate that antibodies targeting these immunodominant regions significantly alter virus neutralisation capacities. Taken together, identification and validation of these neutralising B-cell epitopes will provide insights towards the design of diagnostics and vaccine candidates against this high priority coronavirus. Characterisation of the human antibody response to SARS-CoV-2 can help the design of serological tests and vaccines. Here, the authors identify two linear epitopes in SARS-CoV-2 spike protein that elicit neutralising antibodies in several patients and could thus be useful for serology and vaccine development.
Convalescent COVID-19 patients are susceptible to endothelial dysfunction due to persistent immune activation
Numerous reports of vascular events after an initial recovery from COVID-19 form our impetus to investigate the impact of COVID-19 on vascular health of recovered patients. We found elevated levels of circulating endothelial cells (CECs), a biomarker of vascular injury, in COVID-19 convalescents compared to healthy controls. In particular, those with pre-existing conditions (e.g., hypertension, diabetes) had more pronounced endothelial activation hallmarks than non-COVID-19 patients with matched cardiovascular risk. Several proinflammatory and activated T lymphocyte-associated cytokines sustained from acute infection to recovery phase, which correlated positively with CEC measures, implicating cytokine-driven endothelial dysfunction. Notably, we found higher frequency of effector T cells in our COVID-19 convalescents compared to healthy controls. The activation markers detected on CECs mapped to counter receptors found primarily on cytotoxic CD8 + T cells, raising the possibility of cytotoxic effector cells targeting activated endothelial cells. Clinical trials in preventive therapy for post-COVID-19 vascular complications may be needed.
Whole blood immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early marker for severe COVID-19
SARS-CoV-2 is the novel coronavirus responsible for the current COVID-19 pandemic. Severe complications are observed only in a small proportion of infected patients but the cellular mechanisms underlying this progression are still unknown. Comprehensive flow cytometry of whole blood samples from 54 COVID-19 patients reveals a dramatic increase in the number of immature neutrophils. This increase strongly correlates with disease severity and is associated with elevated IL-6 and IP-10 levels, two key players in the cytokine storm. The most pronounced decrease in cell counts is observed for CD8 T-cells and VD2 γδ T-cells, which both exhibit increased differentiation and activation. ROC analysis reveals that the count ratio of immature neutrophils to VD2 (or CD8) T-cells predicts pneumonia onset (0.9071) as well as hypoxia onset (0.8908) with high sensitivity and specificity. It would thus be a useful prognostic marker for preventive patient management and improved healthcare resource management. COVID-19 severity is associated with cytokine levels and lymphopenia, but the role of immune cell subsets is not well understood. Here the authors immunophenotype whole blood samples from 54 COVID-19 patients and find that the immature neutrophil-to-VD2 T-cell ratio is associated with severe COVID-19.
Highly focused transcriptional response of Anopheles coluzzii to O’nyong nyong arbovirus during the primary midgut infection
Background Anopheles mosquitoes are efficient vectors of human malaria, but it is unknown why they do not transmit viruses as well as Aedes and Culex mosquitoes. The only arbovirus known to be consistently transmitted by Anopheles mosquitoes is O’nyong nyong virus (ONNV, genus Alphavirus, family Togaviridae). The interaction of Anopheles mosquitoes with RNA viruses has been relatively unexamined. Results We transcriptionally profiled the African malaria vector, Anopheles coluzzii, infected with ONNV. Mosquitoes were fed on an infectious bloodmeal and were analyzed by Illumina RNAseq at 3 days post-bloodmeal during the primary virus infection of the midgut epithelium, before systemic dissemination. Virus infection triggers transcriptional regulation of just 30 host candidate genes. Most of the regulated candidate genes are novel, without known function. Of the known genes, a significant cluster includes candidates with predicted involvement in carbohydrate metabolism. Two candidate genes encoding leucine-rich repeat immune (LRIM) factors point to possible involvement of immune protein complexes in the mosquito antiviral response. The primary ONNV infection by bloodmeal shares little transcriptional response in common with ONNV infection by intrathoracic injection, nor with midgut infection by the malaria parasites, Plasmodium falciparum or P. berghei . Profiling of A. coluzzii microRNA (miRNA) identified 118 known miRNAs and 182 potential novel miRNA candidates, with just one miRNA regulated by ONNV infection. This miRNA was not regulated by other previously reported treatments, and may be virus specific. Coexpression analysis of miRNA abundance and messenger RNA expression revealed discrete clusters of genes regulated by Imd and JAK/STAT, immune signaling pathways that are protective against ONNV in the primary infection. Conclusions ONNV infection of the A. coluzzii midgut triggers a remarkably limited gene regulation program of mostly novel candidate genes, which likely includes host genes deployed for antiviral defense, as well as genes manipulated by the virus to facilitate infection. Functional dissection of the ONNV-response candidate genes is expected to generate novel insight into the mechanisms of virus-vector interaction.
De novo profiling of RNA viruses in Anopheles malaria vector mosquitoes from forest ecological zones in Senegal and Cambodia
Background Mosquitoes are colonized by a large but mostly uncharacterized natural virome of RNA viruses, and the composition and distribution of the natural RNA virome may influence the biology and immunity of Anopheles malaria vector populations. Results Anopheles mosquitoes were sampled in malaria endemic forest village sites in Senegal and Cambodia, including Anopheles funestus, Anopheles gambiae group sp., and Anopheles coustani in Senegal, and Anopheles hyrcanus group sp., Anopheles maculatus group sp . , and Anopheles dirus in Cambodia. The most frequent mosquito species sampled at both study sites are human malaria vectors. Small and long RNA sequences were depleted of mosquito host sequences, de novo assembled and clustered to yield non-redundant contigs longer than 500 nucleotides. Analysis of the assemblies by sequence similarity to known virus families yielded 115 novel virus sequences, and evidence supports a functional status for at least 86 of the novel viral contigs. Important monophyletic virus clades in the Bunyavirales and Mononegavirales orders were found in these Anopheles from Africa and Asia. The remaining non-host RNA assemblies that were unclassified by sequence similarity to known viruses were clustered by small RNA profiles, and 39 high-quality independent contigs strongly matched a pattern of classic RNAi processing of viral replication intermediates, suggesting they are entirely undescribed viruses. One thousand five hundred sixty-six additional high-quality unclassified contigs matched a pattern consistent with Piwi-interacting RNAs (piRNAs), suggesting that strand-biased piRNAs are generated from the natural virome in Anopheles . To functionally query piRNA effect, we analyzed piRNA expression in Anopheles coluzzii after infection with O’nyong nyong virus (family Togaviridae ), and identified two piRNAs that appear to display specifically altered abundance upon arbovirus infection. Conclusions Anopheles vectors of human malaria in Africa and Asia are ubiquitously colonized by RNA viruses, some of which are monophyletic but clearly diverged from other arthropod viruses. The interplay between small RNA pathways, immunity, and the virome may represent part of the homeostatic mechanism maintaining virome members in a commensal or nonpathogenic state, and could potentially influence vector competence.
Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota
Significance It is important to understand antiviral mechanisms in potential new arbovirus vectors, such as Anopheles mosquitoes, in order to assess risks associated with arbovirus spread. Using an arbovirus naturally transmitted by Anopheles , we find that important immune mechanisms involved in the first bottleneck to Anopheles infection, the midgut, have distinct effects on arbovirus or malaria. This result is, to our knowledge, the first concrete evidence of protection tradeoffs for different human pathogens in a human disease vector, and it suggests that design of genetically immune-modified mosquitoes could result in unexpected outcomes. These results also indicate that different mosquito tissues display distinct antiviral protection that probably imposes divergent selection pressures upon viral replication during different stages of the infection. Arboviruses are transmitted by mosquitoes and other arthropods to humans and animals. The risk associated with these viruses is increasing worldwide, including new emergence in Europe and the Americas. Anopheline mosquitoes are vectors of human malaria but are believed to transmit one known arbovirus, o’nyong-nyong virus, whereas Aedes mosquitoes transmit many. Anopheles interactions with viruses have been little studied, and the initial antiviral response in the midgut has not been examined. Here, we determine the antiviral immune pathways of the Anopheles gambiae midgut, the initial site of viral infection after an infective blood meal. We compare them with the responses of the post-midgut systemic compartment, which is the site of the subsequent disseminated viral infection. Normal viral infection of the midgut requires bacterial flora and is inhibited by the activities of immune deficiency (Imd), JAK/STAT, and Leu-rich repeat immune factors. We show that the exogenous siRNA pathway, thought of as the canonical mosquito antiviral pathway, plays no detectable role in antiviral defense in the midgut but only protects later in the systemic compartment. These results alter the prevailing antiviral paradigm by describing distinct protective mechanisms in different body compartments and infection stages. Importantly, the presence of the midgut bacterial flora is required for full viral infectivity to Anopheles , in contrast to malaria infection, where the presence of the midgut bacterial flora is required for protection against infection. Thus, the enteric flora controls a reciprocal protection tradeoff in the vector for resistance to different human pathogens.
Metavisitor, a Suite of Galaxy Tools for Simple and Rapid Detection and Discovery of Viruses in Deep Sequence Data
Metavisitor is a software package that allows biologists and clinicians without specialized bioinformatics expertise to detect and assemble viral genomes from deep sequence datasets. The package is composed of a set of modular bioinformatic tools and workflows that are implemented in the Galaxy framework. Using the graphical Galaxy workflow editor, users with minimal computational skills can use existing Metavisitor workflows or adapt them to suit specific needs by adding or modifying analysis modules. Metavisitor works with DNA, RNA or small RNA sequencing data over a range of read lengths and can use a combination of de novo and guided approaches to assemble genomes from sequencing reads. We show that the software has the potential for quick diagnosis as well as discovery of viruses from a vast array of organisms. Importantly, we provide here executable Metavisitor use cases, which increase the accessibility and transparency of the software, ultimately enabling biologists or clinicians to focus on biological or medical questions.
Mosquito salivary sialokinin reduces monocyte activation and chikungunya virus-induced inflammation via neurokinin receptors
Global warming is expanding mosquito habitats and increasing mosquito-borne diseases. In tropical and sub-tropical regions, chikungunya virus (CHIKV) transmitted by Aedes mosquitoes has become a major concern due to the debilitating chronic joint disease it causes. Mosquito saliva contains bioactive factors that enhance viral infection, with sialokinin identified as a key contributor to vascular leakage and viral spread in mice. Here, we demonstrate that sialokinin binds to neurokinin receptors and restricts the activation of human myeloid cells. Mechanistically, sialokinin facilitates early viral dissemination, as evidenced by increased viral load in the contralateral footpad at 1 day post-infection, and significantly reduces circulating CD169+ monocytes while suppressing IFN-γ-producing T-cell-driven inflammation, as reflected by reduced joint footpad swelling in female CHIKV-infected mice. Clinically, patients with severe CHIKV disease exhibited higher levels of IgG antibodies against sialokinin, which correlated with higher viral loads and systemic inflammatory markers. Our findings highlight the multifaceted role of sialokinin in facilitating early viral dissemination and modulating host immunity during CHIKV infection. Given the growing threat of mosquito-borne diseases in a warming, disease-burdened world, targeting mosquito salivary factors like sialokinin could offer a novel therapeutic strategy to mitigate viral-induced inflammation and improve clinical outcomes. The role of mosquito saliva proteins in viral infection remains incompletely understood. Here, the authors show that sialokinin facilitates viral dissemination while suppressing immune response and inflammation in chikungunya virus-infected mice.
Asymptomatic COVID‐19: disease tolerance with efficient anti‐viral immunity against SARS‐CoV‐2
The immune responses and mechanisms limiting symptom progression in asymptomatic cases of SARS‐CoV‐2 infection remain unclear. We comprehensively characterized transcriptomic profiles, cytokine responses, neutralization capacity of antibodies, and cellular immune phenotypes of asymptomatic patients with acute SARS‐CoV‐2 infection to identify potential protective mechanisms. Compared to symptomatic patients, asymptomatic patients had higher counts of mature neutrophils and lower proportion of CD169 + expressing monocytes in the peripheral blood. Systemic levels of pro‐inflammatory cytokines were also lower in asymptomatic patients, accompanied by milder pro‐inflammatory gene signatures. Mechanistically, a more robust systemic Th2 cell signature with a higher level of virus‐specific Th17 cells and a weaker yet sufficient neutralizing antibody profile against SARS‐CoV‐2 was observed in asymptomatic patients. In addition, asymptomatic COVID‐19 patients had higher systemic levels of growth factors that are associated with cellular repair. Together, the data suggest that asymptomatic patients mount less pro‐inflammatory and more protective immune responses against SARS‐CoV‐2 indicative of disease tolerance. Insights from this study highlight key immune pathways that could serve as therapeutic targets to prevent disease progression in COVID‐19. Synopsis Whole blood transcriptomic analyses highlight distinct immune responses during acute phase of disease. Asymptomatic patients elicit a more robust TH17 response compared to symptomatic patients. Asymptomatic patients present a less inflammatory profile, with lower counts of CD169 + monocytes, activated neutrophils, and a muted inflammatory response. Higher levels of cellular repair biomarkers are also observed in asymptomatic patients. Graphical Abstract We show that asymptomatic patients elicit a different repertoire of immune responses from symptomatic patients. Our data suggest that asymptomatic patients could limit symptom development with a well‐balanced inflammatory response and more protective immune responses against SARS‐CoV‐2.
Identification and Characterization of Two Novel RNA Viruses from Anopheles gambiae Species Complex Mosquitoes
Mosquitoes of the Anopheles gambiae complex display strong preference for human bloodmeals and are major malaria vectors in Africa. However, their interaction with viruses or role in arbovirus transmission during epidemics has been little examined, with the exception of O'nyong-nyong virus, closely related to Chikungunya virus. Deep-sequencing has revealed different RNA viruses in natural insect viromes, but none have been previously described in the Anopheles gambiae species complex. Here, we describe two novel insect RNA viruses, a Dicistrovirus and a Cypovirus, found in laboratory colonies of An. gambiae taxa using small-RNA deep sequencing. Sequence analysis was done with Metavisitor, an open-source bioinformatic pipeline for virus discovery and de novo genome assembly. Wild-collected Anopheles from Senegal and Cambodia were positive for the Dicistrovirus and Cypovirus, displaying high sequence identity to the laboratory-derived virus. Thus, the Dicistrovirus (Anopheles C virus, AnCV) and Cypovirus (Anopheles Cypovirus, AnCPV) are components of the natural virome of at least some anopheline species. Their possible influence on mosquito immunity or transmission of other pathogens is unknown. These natural viruses could be developed as models for the study of Anopheles-RNA virus interactions in low security laboratory settings, in an analogous manner to the use of rodent malaria parasites for studies of mosquito anti-parasite immunity.