Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "Guillo-Sansano, Efren"
Sort by:
Advanced Laboratory Testing Methods Using Real-Time Simulation and Hardware-in-the-Loop Techniques: A Survey of Smart Grid International Research Facility Network Activities
The integration of smart grid technologies in interconnected power system networks presents multiple challenges for the power industry and the scientific community. To address these challenges, researchers are creating new methods for the validation of: control, interoperability, reliability of Internet of Things systems, distributed energy resources, modern power equipment for applications covering power system stability, operation, control, and cybersecurity. Novel methods for laboratory testing of electrical power systems incorporate novel simulation techniques spanning real-time simulation, Power Hardware-in-the-Loop, Controller Hardware-in-the-Loop, Power System-in-the-Loop, and co-simulation technologies. These methods directly support the acceleration of electrical systems and power electronics component research by validating technological solutions in high-fidelity environments. In this paper, members of the Survey of Smart Grid International Research Facility Network task on Advanced Laboratory Testing Methods present a review of methods, test procedures, studies, and experiences employing advanced laboratory techniques for validation of range of research and development prototypes and novel power system solutions.
Multi-Agent System with Plug and Play Feature for Distributed Secondary Control in Microgrid—Controller and Power Hardware-in-the-Loop Implementation
Distributed control and optimization strategies are a promising alternative approach to centralized control within microgrids. In this paper, a multi-agent system is developed to deal with the distributed secondary control of islanded microgrids. Two main challenges are identified in the coordination of a microgrid: (i) interoperability among equipment from different vendors; and (ii) online re-configuration of the network in the case of alteration of topology. To cope with these challenges, the agents are designed to communicate with physical devices via the industrial standard IEC 61850 and incorporate a plug and play feature. This allows interoperability within a microgrid at agent layer as well as allows for online re-configuration upon topology alteration. A test case of distributed frequency control of islanded microgrid with various scenarios was conducted to validate the operation of proposed approach under controller and power hardware-in-the-loop environment, comprising prototypical hardware agent systems and realistic communications network.
Facilitating the Transition to an Inverter Dominated Power System: Experimental Evaluation of a Non-Intrusive Add-On Predictive Controller
The transition to an inverter-dominated power system is expected with the large-scale integration of distributed energy resources (DER). To improve the dynamic response of DERs already installed within such a system, a non-intrusive add-on controller referred to as SPAACE (set point automatic adjustment with correction enabled), has been proposed in the literature. Extensive simulation-based analysis and supporting mathematical foundations have helped establish its theoretical prevalence. This paper establishes the practical real-world relevance of SPAACE via a rigorous performance evaluation utilizing a high fidelity hardware-in-the-loop systems test bed. A comprehensive methodological approach to the evaluation with several practical measures has been undertaken and the performance of SPAACE subject to representative scenarios assessed. With the evaluation undertaken, the fundamental hypothesis of SPAACE for real-world applications has been proven, i.e., improvements in dynamic performance can be achieved without access to the internal controller. Furthermore, based on the quantitative analysis, observations, and recommendations are reported. These provide guidance for future potential users of the approach in their efforts to accelerate the transition to an inverter-dominated power system.
Initialization and Synchronization of Power Hardware-In-The-Loop Simulations: A Great Britain Network Case Study
The hardware under test (HUT) in a power hardware in the loop (PHIL) implementation can have a significant effect on overall system stability. In some cases, the system under investigation will be unstable unless the HUT is already connected and operating. Accordingly, initialization of the real-time simulation can be difficult, and may lead to abnormal parameters of frequency and voltage. Therefore, a method to initialize the simulation appropriately without the HUT is proposed in this contribution. Once the initialization is accomplished a synchronization process is also proposed. The synchronization process depends on the selected method for initialization and therefore both methods need to be compatible. In this contribution, a recommended practice for the initialization of PHIL simulations for synchronous power systems is presented. Experimental validation of the proposed method for a Great Britain network case study demonstrates the effectiveness of the approach.
Novel methods for enhancing accuracy and stability of power hardware-in-the-loop simulations
Novel methods for the interface between the simulation and hardware of Power Hardware-In-the-Loop (PHIL) configurations have been analysed, developed and experimentally evaluated in this thesis, for enhancing the applicability of PHIL simulations, increasing its stability and accuracy performance. Time delay is proven to be a critical limiting factor for PHIL simulations. Appropriately, a characterisation methodology for the time delay present within PHIL has been established, by which individual identification of time delay sources as well as time delay dynamics within the different components are reviewed. As a result, variable time delay has been identified within these configurations and mitigation techniques for the time delay and its variability are presented. Furthermore, a time delay compensation scheme using Sliding Discrete Fourier Transform (SDFT) is demonstrated experimentally to improve the accuracy and stability of PHIL, even when harmonic components are present. Detailed stability analysis of PHIL simulations performed provides clarification on the stability conditions of Ideal Transformer Method (ITM) Interface Algorithms (IAs). Additional improvements to PHIL IAs have been evaluated, with novel adaptive IAs established to provide enhanced stability. Finally, enhancement of applicability of PHIL simulations is also experimentally proven with the implementation of an initialization process to a large scale power system application, in which the time delay compensation algorithm is also integrated.
Simulation-based Validation of Smart Grids - Status Quo and Future Research Trends
Smart grid systems are characterized by high complexity due to interactions between a traditional passive network and active power electronic components, coupled using communication links. Additionally, automation and information technology plays an important role in order to operate and optimize such cyber-physical energy systems with a high(er) penetration of fluctuating renewable generation and controllable loads. As a result of these developments the validation on the system level becomes much more important during the whole engineering and deployment process, today. In earlier development stages and for larger system configurations laboratory-based testing is not always an option. Due to recent developments, simulation-based approaches are now an appropriate tool to support the development, implementation, and roll-out of smart grid solutions. This paper discusses the current state of simulation-based approaches and outlines the necessary future research and development directions in the domain of power and energy systems.