Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
64
result(s) for
"Gulcehre, Caglar"
Sort by:
Grandmaster level in StarCraft II using multi-agent reinforcement learning
2019
Many real-world applications require artificial agents to compete and coordinate with other agents in complex environments. As a stepping stone to this goal, the domain of StarCraft has emerged as an important challenge for artificial intelligence research, owing to its iconic and enduring status among the most difficult professional esports and its relevance to the real world in terms of its raw complexity and multi-agent challenges. Over the course of a decade and numerous competitions
1
–
3
, the strongest agents have simplified important aspects of the game, utilized superhuman capabilities, or employed hand-crafted sub-systems
4
. Despite these advantages, no previous agent has come close to matching the overall skill of top StarCraft players. We chose to address the challenge of StarCraft using general-purpose learning methods that are in principle applicable to other complex domains: a multi-agent reinforcement learning algorithm that uses data from both human and agent games within a diverse league of continually adapting strategies and counter-strategies, each represented by deep neural networks
5
,
6
. We evaluated our agent, AlphaStar, in the full game of StarCraft II, through a series of online games against human players. AlphaStar was rated at Grandmaster level for all three StarCraft races and above 99.8% of officially ranked human players.
AlphaStar uses a multi-agent reinforcement learning algorithm and has reached Grandmaster level, ranking among the top 0.2% of human players for the real-time strategy game StarCraft II.
Journal Article
Beyond Autoregression: Fast LLMs via Self-Distillation Through Time
2024
Autoregressive (AR) Large Language Models (LLMs) have demonstrated significant success across numerous tasks. However, the AR modeling paradigm presents certain limitations; for instance, contemporary autoregressive LLMs are trained to generate one token at a time, which can result in noticeable latency. Recent advances have indicated that search and repeated sampling can enhance performance in various applications, such as theorem proving, code generation, and alignment, by utilizing greater computational resources during inference. In this study, we demonstrate that diffusion language models are capable of generating at least 32 tokens simultaneously, while exceeding the performance of AR models in text quality and on the LAMBADA natural language understanding benchmark. This outcome is achieved through a novel distillation method for discrete diffusion models, which reduces the number of inference steps by a factor of 32-64. Practically, our models, even without caching, can generate tokens at a rate that is up to 8 times faster than AR models employing KV caching, and we anticipate further improvements with the inclusion of caching. Moreover, we demonstrate the efficacy of our approach for diffusion language models with up to 860M parameters.
In Search for Architectures and Loss Functions in Multi-Objective Reinforcement Learning
2024
Multi-objective reinforcement learning (MORL) is essential for addressing the intricacies of real-world RL problems, which often require trade-offs between multiple utility functions. However, MORL is challenging due to unstable learning dynamics with deep learning-based function approximators. The research path most taken has been to explore different value-based loss functions for MORL to overcome this issue. Our work empirically explores model-free policy learning loss functions and the impact of different architectural choices. We introduce two different approaches: Multi-objective Proximal Policy Optimization (MOPPO), which extends PPO to MORL, and Multi-objective Advantage Actor Critic (MOA2C), which acts as a simple baseline in our ablations. Our proposed approach is straightforward to implement, requiring only small modifications at the level of function approximator. We conduct comprehensive evaluations on the MORL Deep Sea Treasure, Minecart, and Reacher environments and show that MOPPO effectively captures the Pareto front. Our extensive ablation studies and empirical analyses reveal the impact of different architectural choices, underscoring the robustness and versatility of MOPPO compared to popular MORL approaches like Pareto Conditioned Networks (PCN) and Envelope Q-learning in terms of MORL metrics, including hypervolume and expected utility.
Promises, Outlooks and Challenges of Diffusion Language Modeling
2024
The modern autoregressive Large Language Models (LLMs) have achieved outstanding performance on NLP benchmarks, and they are deployed in the real world. However, they still suffer from limitations of the autoregressive training paradigm. For example, autoregressive token generation is notably slow and can be prone to \\textit{exposure bias}. The diffusion-based language models were proposed as an alternative to autoregressive generation to address some of these limitations. We evaluate the recently proposed Score Entropy Discrete Diffusion (SEDD) approach and show it is a promising alternative to autoregressive generation but it has some short-comings too. We empirically demonstrate the advantages and challenges of SEDD, and observe that SEDD generally matches autoregressive models in perplexity and on benchmarks such as HellaSwag, Arc or WinoGrande. Additionally, we show that in terms of inference latency, SEDD can be up to 4.5\\(\\times\\) more efficient than GPT-2. While SEDD allows conditioning on tokens at abitrary positions, SEDD appears slightly weaker than GPT-2 for conditional generation given short prompts. Finally, we reproduced the main results from the original SEDD paper.
The Role of Deep Learning Regularizations on Actors in Offline RL
by
Gulcehre, Caglar
,
Tarasov, Denis
,
Surina, Anja
in
Algorithms
,
Artificial neural networks
,
Deep learning
2024
Deep learning regularization techniques, such as dropout, layer normalization, or weight decay, are widely adopted in the construction of modern artificial neural networks, often resulting in more robust training processes and improved generalization capabilities. However, in the domain of Reinforcement Learning (RL), the application of these techniques has been limited, usually applied to value function estimators (Hiraoka et al., 2021; Smith et al., 2022), and may result in detrimental effects. This issue is even more pronounced in offline RL settings, which bear greater similarity to supervised learning but have received less attention. Recent work in continuous offline RL (Park et al., 2024) has demonstrated that while we can build sufficiently powerful critic networks, the generalization of actor networks remains a bottleneck. In this study, we empirically show that applying standard regularization techniques to actor networks in offline RL actor-critic algorithms yields improvements of 6% on average across two algorithms and three different continuous D4RL domains.
No Representation, No Trust: Connecting Representation, Collapse, and Trust Issues in PPO
by
Gulcehre, Caglar
,
Miele, Andrea
,
Pyatko, Daniil
in
Neural networks
,
Optimization
,
Performance enhancement
2024
Reinforcement learning (RL) is inherently rife with non-stationarity since the states and rewards the agent observes during training depend on its changing policy. Therefore, networks in deep RL must be capable of adapting to new observations and fitting new targets. However, previous works have observed that networks trained under non-stationarity exhibit an inability to continue learning, termed loss of plasticity, and eventually a collapse in performance. For off-policy deep value-based RL methods, this phenomenon has been correlated with a decrease in representation rank and the ability to fit random targets, termed capacity loss. Although this correlation has generally been attributed to neural network learning under non-stationarity, the connection to representation dynamics has not been carefully studied in on-policy policy optimization methods. In this work, we empirically study representation dynamics in Proximal Policy Optimization (PPO) on the Atari and MuJoCo environments, revealing that PPO agents are also affected by feature rank deterioration and capacity loss. We show that this is aggravated by stronger non-stationarity, ultimately driving the actor's performance to collapse, regardless of the performance of the critic. We ask why the trust region, specific to methods like PPO, cannot alleviate or prevent the collapse and find a connection between representation collapse and the degradation of the trust region, one exacerbating the other. Finally, we present Proximal Feature Optimization (PFO), a novel auxiliary loss that, along with other interventions, shows that regularizing the representation dynamics mitigates the performance collapse of PPO agents.
The Effect of Scheduling and Preemption on the Efficiency of LLM Inference Serving
by
Gulcehre, Caglar
,
Hong, Kijae
,
Ailamaki, Anastasia
in
Configuration management
,
Error analysis
,
Inference
2024
The growing usage of Large Language Models (LLMs) highlights the demands and challenges in scalable LLM inference systems, affecting deployment and development processes. On the deployment side, there is a lack of comprehensive analysis on the conditions under which a particular scheduler performs better or worse, with performance varying substantially across different schedulers, hardware, models, and workloads. Manually testing each configuration on GPUs can be prohibitively expensive. On the development side, unpredictable performance and unknown upper limits can lead to inconclusive trial-and-error processes, consuming resources on ideas that end up ineffective. To address these challenges, we introduce INFERMAX, an analytical framework that uses inference cost models to compare various schedulers, including an optimal scheduler formulated as a constraint satisfaction problem (CSP) to establish an upper bound on performance. Our framework offers in-depth analysis and raises essential questions, challenging assumptions and exploring opportunities for more efficient scheduling. Notably, our findings indicate that preempting requests can reduce GPU costs by 30% compared to avoiding preemptions at all. We believe our methods and insights will facilitate the cost-effective deployment and development of scalable, efficient inference systems and pave the way for cost-based scheduling.
Building on Efficient Foundations: Effectively Training LLMs with Structured Feedforward Layers
2024
State-of-the-art results in large language models (LLMs) often rely on scale, which becomes computationally expensive. This has sparked a research agenda to reduce these models' parameter counts and computational costs without significantly impacting their performance. Our study focuses on transformer-based LLMs, specifically targeting the computationally intensive feedforward networks (FFNs), which are less studied than attention blocks. We consider three structured linear parameterizations of the FFN using efficient low-rank and block-diagonal matrices. In contrast to many previous works that examined these approximations, our study i) explores these structures from a training-from-scratch perspective, ii) scales up to 1.3B parameters, and iii) is conducted within recent Transformer-based LLMs rather than convolutional architectures. We demonstrate that these structures can lead to actual computational gains in various scenarios, including online decoding when using a pre-merge technique. Additionally, we propose a novel training regime, called \\textit{self-guided training}, aimed at improving the poor training dynamics that these approximations exhibit when used from initialization. Interestingly, the scaling performance of structured matrices is explored, revealing steeper curves in scaling training FLOPs, along with a favorable scaling trend in the overtraining regime. Specifically, we show that wide and structured networks can utilize training FLOPs more efficiently, with fewer parameters and lower loss than dense models at their optimal trade-off. Our code is available at \\url{https://github.com/CLAIRE-Labo/StructuredFFN/tree/main}.
SIKeD: Self-guided Iterative Knowledge Distillation for mathematical reasoning
by
Gulcehre, Caglar
,
Sachan, Mrinmaya
,
Kumar, Shridhar
in
Distillation
,
Iterative methods
,
Knowledge management
2024
Large Language Models (LLMs) can transfer their reasoning skills to smaller models by teaching them to generate the intermediate reasoning process required to solve multistep reasoning tasks. While LLMs can accurately solve reasoning tasks through a variety of strategies, even without fine-tuning, smaller models are not expressive enough to fit the LLMs distribution on all strategies when distilled and tend to prioritize one strategy over the others. This reliance on one strategy poses a challenge for smaller models when attempting to solve reasoning tasks that may be difficult with their preferred strategy. To address this, we propose a distillation method SIKeD (Self-guided Iterative Knowledge Distillation for mathematical reasoning), where the LLM teaches the smaller model to approach a task using different strategies and the smaller model uses its self-generated on-policy outputs to choose the most suitable strategy for the given task. The training continues in a self-guided iterative manner, where for each training iteration, a decision is made on how to combine the LLM data with the self-generated outputs. Unlike traditional distillation methods, SIKeD allows the smaller model to learn which strategy is suitable for a given task while continuously learning to solve a task using different strategies. Our experiments on various mathematical reasoning datasets show that SIKeD significantly outperforms traditional distillation techniques across smaller models of different sizes. Our code is available at: https://github.com/kumar-shridhar/SIKeD
Aligning Large Language Models with Diverse Political Viewpoints
2024
Large language models such as ChatGPT exhibit striking political biases. If users query them about political information, they often take a normative stance. To overcome this, we align LLMs with diverse political viewpoints from 100,000 comments written by candidates running for national parliament in Switzerland. Models aligned with this data can generate more accurate political viewpoints from Swiss parties, compared to commercial models such as ChatGPT. We also propose a procedure to generate balanced overviews summarizing multiple viewpoints using such models. The replication package contains all code and data.