Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
320 result(s) for "Guo, Anqi"
Sort by:
The digitalization and public crisis responses of small and medium enterprises: Implications from a COVID-19 survey
The COVID-19 outbreak is a global crisis that has placed small and medium enterprises (SMEs) under huge pressure to survive, requiring them to respond effectively to the crisis. SMEs have adopted various digital technologies to cope with this crisis. Using a data set from a survey with 518 Chinese SMEs, the study examines the relationship between SMEs’ digitalization and their public crisis responses. The empirical results show that digitalization has enabled SMEs to respond effectively to the public crisis by making use of their dynamic capabilities. In addition, digitalization can help improve SMEs’ performance. We propose a theoretical framework of digitalization and crisis responses for SMEs and present three avenues for future research.
Animal and Plant Protein Oxidation: Chemical and Functional Property Significance
Protein oxidation, a phenomenon that was not well recognized previously but now better understood, is a complex chemical process occurring ubiquitously in food systems and can be induced by processing treatments as well. While early research concentrated on muscle protein oxidation, later investigations included plant, milk, and egg proteins. The process of protein oxidation involves both radicals and nonradicals, and amino acid side chain groups are usually the site of initial oxidant attack which generates protein carbonyls, disulfide, dityrosine, and protein radicals. The ensuing alteration of protein conformational structures and formation of protein polymers and aggregates can result in significant changes in solubility and functionality, such as gelation, emulsification, foaming, and water-holding. Oxidant dose-dependent effects have been widely reported, i.e., mild-to-moderate oxidation may enhance the functionality while strong oxidation leads to insolubilization and functionality losses. Therefore, controlling the extent of protein oxidation in both animal and plant protein foods through oxidative and antioxidative strategies has been of wide interest in model system as well in in situ studies. This review presents a historical perspective of food protein oxidation research and provides an inclusive discussion of the impact of chemical and enzymatic oxidation on functional properties of meat, legume, cereal, dairy, and egg proteins based on the literature reports published in recent decades.
Highly fluorescent CsPbBr3/TiO2 core/shell perovskite nanocrystals with excellent stability
The poor stability of CsPbX 3 (X = Cl, Br, I) perovskite nanocrystals is the most impediment to its application in the field of photoelectrics. In this work, monodisperse CsPbBr 3 /TiO 2 nanocrystals are successfully prepared by coating titanium precursor on the surface of colloidal CsPbBr 3 nanocrystals at room temperature. The CsPbBr 3 /TiO 2 nanocomposites exhibit excellent stability, remaining the identical particle size (9.2 nm), crystal structures and optical properties. Time-resolved photoluminescence decay shows that the lifetime of CsPbBr 3 /TiO 2 nanocrystals is about 4.04 ns and keeps great stability after lasting two months in the air. Results show that the coating of TiO 2 on CsPbBr 3 NCs greatly suppressed the anion exchange and photodegradation, which are the main reasons for dramatically improving their chemical stability and photostability. The results provide an effective method to solve the stability problem of perovskite nanostructures and are expected to have a promising application in optoelectronic fields Article highlights 1. Prepared the all-inorganic CsPbBr 3 /TiO 2 core/shell perovskite nanocrystals by an easy method. 2. Explored its essences of PL and lifetime of the synthesized CsPbBr 3 /TiO 2 perovskite nanocrystals. 3. CsPbBr 3 /TiO 2 nanocrystals show the great thermal stability after the post-annealing. 4. The CsPbBr 3 /TiO 2 nanocrystals have a high PLQY and have a promising application in solar cells.
Megakaryocytes transfer mitochondria to bone marrow mesenchymal stromal cells to lower platelet activation
Newly produced platelets acquire a low activation state, but whether the megakaryocyte plays a role in this outcome has not been fully uncovered. Mesenchymal stem cells (MSCs) were previously shown to promote platelet production and lower platelet activation. We found that healthy megakaryocytes transfer mitochondria to MSCs, which is mediated by connexin 43 (Cx43) gap junctions on MSCs and leads to platelets at a low energetic state with increased LYN activation, characteristic of resting platelets with increased LYN activation, characteristic of resting platelets. On the contrary, MSCs have a limited ability to transfer mitochondria to megakaryocytes. Sickle cell disease (SCD) is characterized by hemolytic anemia and results in heightened platelet activation, contributing to numerous disease complications. Platelets in SCD mice and human samples had a heightened energetic state with increased glycolysis. MSC exposure to heme in SCD led to decreased Cx43 expression and a reduced ability to uptake mitochondria from megakaryocytes. This prevented LYN activation in platelets and contributed to increased platelet activation at steady state. Altogether, our findings demonstrate an effect of hemolysis in the microenvironment leading to increased platelet activation in SCD. These findings have the potential to inspire new therapeutic targets to relieve thrombosis-related complications of SCD and other hemolytic conditions.
Design, Performance Testing, and Experimental Validation of Modular Soft Robots Based on Thin-Film Actuators
Currently, soft robots face challenges such as low motion efficiency, susceptibility to damage in traditional silicone materials, and difficulty in achieving reproducible manufacturing. To address these issues, we integrate flexible film materials with modular design principles and apply them to soft robotics. Based on the concept of modularity, this study simplifies and decomposes the robot’s motion into three fundamental modules: a thin-film elongation actuator module, a thin-film deflection actuator module, and a connection module. Inspired by the Miura-fold origami technique and traditional lantern contraction, the elongation actuator is designed to produce axial extension of varying lengths under different air pressures. The deflection actuator is modeled after the head expansion mechanism of the pelican eel, enabling deflection movement. The connection module integrates the elongation and deflection modules into a unified structure. The research results show that the elongation actuator achieves an extension length of 118 mm under 50 kPa and can pull a 500 g load during horizontal contraction. The two-layer deflection actuator achieves a deflection angle of 56° at 40 kPa, while the three-layer version reaches 98°. For further demonstration, we subsequently conducted peristaltic soft robot experiments and obstacle avoidance experiments. This study holds significant potential for the development of next-generation multifunctional soft robots.
New insights into changes in ocular structural parameters in simulated hypobaric hypoxia
PurposeHigh altitude is the main area for human exploration, and human eye is an important organ for obtaining visual signals. The changes of ocular structural parameters in a simulated hypobaric hypoxia environment need to be clarified.MethodsMeasurements were taken at five altitudes ((1) ground, (2) 3500 m, (3) 4000 m, (4) 4500 m and (5) ground). Refractive values were measured with the IOL Master (Carl Zeiss Shanghai Co. Ltd.). Data analysis was performed using the Kolmogorov-Smirnov (K-S) test, paired sample T-test and Wilcoxon test.ResultsSubjects’ axial length (AL) increased with altitude, peaking at 4500 m, then decreased. Significant AL differences were observed across altitudes (p<0.05), except between 2–5 and 3–5. Central corneal thickness (CCT) thickened then thinned with elevation changes, significantly thicker at altitudes 2–5 compared with the baseline (p<0.05). Lens thickness (LT) followed a similar pattern, increasing up to altitude 4, then decreasing at 5. Correlations were found between AL and LT at altitudes 1 (r=0.375, p<0.05) and 5 (r=0.341, p<0.05), and between AL and CCT at altitude 4 (r=0.337, p<0.05), but not elsewhere.ConclusionsAs altitude increases and acute low-pressure hypoxia worsens, changes in AL, CCT and LT may affect pilots’ visual function, information acquisition, decision-making and flight safety.
Selective Catalytic Reduction of NO with H2 over Pt/Pd-Containing Catalysts on Silica-Based Supports
Platinum- and/or palladium-containing silica-based supports were applied for the selective catalytic reduction of NOx with hydrogen (H2-SCR-DeNOx). To obtain enhanced activity and N2 selectivity below 150 °C, we varied the type and loading of noble metals (Pt and Pd both individually and paired, 0.1–1.0 wt.-%), silica-containing supports (ZrO2/SiO2, ZrO2/SiO2/Al2O3, Al2O3/SiO2/TiO2), as well as the H2 concentration in the feed (2000–4000 ppm). All of these contributed to enhancing N2 selectivity during H2-SCR-DeNOx over the (0.5 wt.-%)Pt/Pd/ZrO2/SiO2 catalyst in the presence of 10 vol.-% of O2. H2 was completely consumed at 150 °C. A comparison of the catalytic results obtained during H2-SCR-DeNOx,(H2-)NH3-SCR-DeNOx, as well as stop-flow H2-SCR-DeNOx and temperature-programmed studies, revealed that in the temperature range between 150 and 250 °C, the continuously coupled or overlaying mechanism of NO reduction by hydrogen and ammonia based on NH3 formation at lower temperatures, which is temporarily stored at the acid sites of the support and desorbed in this temperature range, could be postulated.
Influence of short-term hypoxia exposure on dynamic visual acuity
To quantify the changes in dynamic visual acuity (DVA) and explain the hidden reasons after acute exposure to hypobaric hypoxia status. The study group comprised 18 healthy male and 15 healthy female participants aged 20-24 years old. DVA was measured with the self-developed software of Meidixin (Tianjin) Co., Ltd. Measurements were taken at eight altitudes. Data analysis was performed using the Kolmogorov-Smirnov test, paired sample -test, and two-way repeated measures analysis of variance (ANOVA) for repeated measurements. At constant altitude, DVA showed an overall decreasing trend with increasing angular velocity and a fluctuating decrease at the vast majority of altitudes. At constant angular velocities, DVA gradually increased with altitude, with the most pronounced increase in DVA at altitude 5, and thereafter a gradual decrease in DVA as altitude increased. Finally, as altitude decreased, DVA increased again and reached a higher level at the end of the experiment, which was superior to the DVA in the initial state. Under a hypobaric hypoxic environment at high altitude, DVA was affected by the angular velocity and the degree of hypoxia, manifesting as an increase or decrease in DVA, which affects the pilot's observation of the display and control interfaces during the driving process, acquisition of information, and decision-making ability, which in turn may potentially jeopardize the safety of the flight.
Investigating the effects of simulated high altitude on colour discrimination
PurposeTo quantify changes in colour vision immediately after exposure to different altitudes of low-pressure hypoxia.MethodsThe study involved 35 healthy participants (ages 20–26). Colour vision was assessed using the Farnsworth-Munsell 100-Hue test at eight different altitudes (condition 1: ground, condition 2: 3500 m, condition 3: 3500 m after 40 min, condition 4: 4000 m, condition 5: 4000 m after 40 min, condition 6: 4500 m, condition 7: 4500 m after 40 min, condition 8: back to the ground). Data were analysed using Analysis of Variance (ANOVA), paired t-test, and χ2 test .ResultsTotal Error Score (TES) increased with altitude and hypoxia duration, with higher TES in condition 8 than in condition 1. There were significant TES differences between conditions 3 and 7, as well as 4 and 7. Friedman and repeated ANOVA tests revealed significant sector differences, with Blue-Yellow Partial Error Score (PES) greater than Red-Green PES, particularly on conditions 4, 5 and 8. Significant Red-Green PES differences were found between conditions 4 and 7, and Blue-Yellow PES between conditions 3 and 5, 7, 8. Tritan (Blue-Yellow) shift was most pronounced at high altitudes.ConclusionsThis experiment investigated acute low-pressure hypoxia’s effects on colour vision, supplementing chronic hypoxia research. Increased altitudes and exposure duration worsen colour vision, with effects persisting post-recovery. Tritan axis loss is most significant under hypoxia.