Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
371 result(s) for "Guo, Chenchen"
Sort by:
Determinants and their spatial heterogeneity of carbon emissions in resource-based cities, China
Global climate change associated with increased carbon emissions has become a global concern. Resource-based cities, by estimations, have emerged as major contributors to carbon emissions, accounting for approximately one-third of the national total. This underscores their pivotal role in the pursuit of carbon neutrality goals. Despite this, resource-based cities have long been neglected in current climate change mitigation policy discussions. Accordingly, using exploratory spatial data analysis and Geographical Weighted Regression method, this study investigates the determinants of carbon emissions and their spatial pattern in 113 resource-based cities in China. It can be concluded that: (1) The proportion of carbon emissions from resource-based cities in the national total has shown a marginal increase between 2003 and 2017, and the emissions from these cities have not yet reached their peak. (2) A relatively stable spatial pattern of “northeast high, southwest low” characterizes carbon emissions in resource-based cities, displaying significant spatial autocorrelation. (3) Population size, economic development level, carbon abatement technology, and the proportion of resource-based industries all contribute to the increase in carbon emissions in these cities, with carbon abatement technology playing a predominant role. (4) There is a spatial variation in the strength of the effects of the various influences.
Novel insights into the involvement of mitochondrial fission/fusion in heart failure
Mitochondria are dynamic organelles that alter their morphology through fission (fragmentation) and fusion (elongation). These morphological changes correlate highly with mitochondrial functional adaptations to stressors, such as hypoxia, pressure overload, and inflammation, and are important in the setting of heart failure. Pathological mitochondrial remodeling, characterized by increased fission and reduced fusion, is associated with impaired mitochondrial respiration, increased mitochondrial oxidative stress, abnormal cytoplasmic calcium handling, and increased cardiomyocyte apoptosis. Considering the impact of the mitochondrial morphology on mitochondrial behavior and cardiomyocyte performance, altered mitochondrial dynamics could be expected to induce or exacerbate the pathogenesis and progression of heart failure. However, whether alterations in mitochondrial fission and fusion accelerate or retard the progression of heart failure has been the subject of intense debate. In this review, we first describe the physiological processes and regulatory mechanisms of mitochondrial fission and fusion. Then, we extensively discuss the pathological contributions of mitochondrial fission and fusion to heart failure. Lastly, we examine potential therapeutic approaches targeting mitochondrial fission/fusion to treat patients with heart failure.
Mesenchymal Stem Cells for the Treatment of Spinal Cord Injury in Rat Models: A Systematic Review and Network Meta-Analysis
Transplantation of mesenchymal stem cells (MSCs) is one of the hopeful treatments for spinal cord injury (SCI). Most current studies are in animals, and less in humans, and the optimal transplantation strategy for MSCs is still controversial. In this article, we explore the optimal transplantation strategy of MSCs through a network meta-analysis of the effects of MSCs on SCI in animal models. PubMed, Web of Science, Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), Wanfang Database, China Science and Technology Journal Database (VIP), and Chinese Biomedical Literature Service System (SinoMed) databases were searched by computer for randomized controlled studies on MSCs for SCI. Two investigators independently completed the literature screening and data extraction based on the inclusion and exclusion criteria. RevMan 5.4 software was used to assess the quality of the included literature. Stata 16.0 software was used for standard meta-analysis and network meta-analysis. Standardized mean difference (SMD) was used for continuous variables to combine the statistics and calculate 95% confidence interval (95% CI). P < 0.05 was considered a statistically significant difference. Cochrane’s Q test and the I2 value were used to indicate the magnitude of heterogeneity. A random-effects model was used if I2 > 50% and P < 0.10 indicated significant heterogeneity between studies, and conversely, a fixed-effects model was used. Evidence network diagrams were drawn based on direct comparisons between various interventions. The surface under the cumulative ranking curve area (SUCRA) was used to predict the ranking of the treatment effects of each intervention. A total of 32 animal studies were included in this article for analysis. The results of the standard meta-analysis showed that MSCs improved motor ability after SCI. The network meta-analysis showed that the best treatment effect was achieved for adipose tissue–derived mesenchymal stromal cells (ADMSCs) in terms of cell source and intrathecal (IT) in terms of transplantation modality. For transplantation timing, the best treatment effect was achieved when transplantation was performed in the subacute phase. The available literature suggests that IT transplantation using ADMSCs in the subacute phase may be the best transplantation strategy to improve functional impairment after SCI. Future high-quality studies are still needed to further validate the results of this study to ensure the reliability of the results.
Assessment of noninvasive brain stimulation interventions in Parkinson’s disease: a systematic review and network meta-analysis
A network meta-analysis of randomized controlled trials was conducted to compare and rank the effectiveness of various noninvasive brain stimulation (NIBS) for Parkinson's disease (PD). We searched PubMed, Web of Science, Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), Wanfang Database, China Science and Technology Journal Database (VIP), and Chinese Biomedical Literature Service System (SinoMed) databases from the date of database inception to April 30th, 2024. Two researchers independently screened studies of NIBS treatment in patients with PD based on inclusion and exclusion criteria. Two researchers independently performed data extraction of the included studies using an Excel spreadsheet and assessed the quality of the literature according to the Cochrane Risk of Bias Assessment Tool (RoB2). Network meta-analysis was performed in StataMP 17.0. A total of 28 studies involving 1628 PD patients were included. The results showed that HF-rTMS over the SMA (SMD = − 2.01; 95% CI [− 2.87, − 1.15]), HF-rTMS over the M1 and DLPFC (SMD = − 1.80; 95% CI [− 2.90, − 0.70]), HF-rTMS over the M1 (SMD = − 1.10; 95% CI [− 1.55, − 0.65]), a-tDCS over the DLPFC (SMD = − 1.08; 95% CI [− 1.90, − 0.27]), HF-rTMS over the M1 and PFC (SMD = − 0.92; 95% CI [− 1.71, − 0.14]), LF-rTMS over the M1 (SMD = − 0.72; 95% CI [− 1.17, − 0.28]), and HF-rTMS over the DLPFC (SMD = − 0.70; 95% CI [− 1.21, − 0.19]) were significantly improved motor function compared with sham stimulation. The SUCRA three highest ranked were HF-rTMS over the SMA (95.1%), HF-rTMS over the M1 and DLPFC (89.6%), and HF-rTMS over the M1 (73.0%). In terms of enhanced cognitive function, HF-rTMS over the DLPFC (SMD = 0.80; 95% CI [0.03,1.56]) was significantly better than sham stimulation. The SUCRA three most highly ranked were a-tDCS over the M1 (69.8%), c-tDCS over the DLPFC (66.9%), and iTBS over the DLPFC (65.3%). HF-rTMS over the M1 (SMD = − 1.43; 95% CI [− 2.26, − 0.61]) and HF-rTMS over the DLPFC (SMD = − 0.79; 95% CI [− 1.45, − 0.12)]) significantly improved depression. The SUCRA three highest ranked were HF-rTMS over the M1 (94.1%), LF-rTMS over the M1 (71.8%), and HF-rTMS over the DLPFC (69.0%). HF-rTMS over the SMA may be the best option for improving motor symptoms in PD patients. a-tDCS and HF-rTMS over the M1 may be the NIBS with the most significant effects on cognition and depression, separately. Trial registration : International Prospective Register of Systematic Review, PROSPERO (CRD42023456088)
Energy Conversion Performance and Optimization of Wearable Annular Thermoelectric Generators
This paper presents a theoretical model for a human skin-wearable annular thermoelectric generator (WATEG) system and provides analytical solutions for its energy conversion performance. The Pennes equation is used to model the heat transfer of human skin, which is assumed to be a cylindrical multilayer structure composed of subcutis, dermis, and epidermis. The heat exchanges induced by blood perfusion and metabolic heat generation within the skin tissue are taken into account. It is found that the influence of skin effect and contact thermal resistance between the human skin and flexible substrate plays a significant role in the energy conversion performance of the WATEG and should be considered. The matched load resistance, optimal fill factor, and height of thermoelectric legs are determined through numerical analysis. The findings of this study can be applied to the practical design of WATEG devices and are expected to contribute to their optimization.
Effects of Dl-3-n-butylphthalide on neurological function, hemodynamics and Hcy concentration in cerebral hemorrhage: a systematic review and meta-analysis
Dl-3-n-Butylphthalide (NBP) has emerged as a potential therapeutic agent for cerebral hemorrhage, despite not being included in current guideline recommendations. Investigating the underlying physiological and pathological mechanisms of Dl-3-n-Butylphthalide in cerebral hemorrhage treatment remains a critical area of research. This review aims to evaluate the efficacy of Dl-3-n-Butylphthalide in cerebral hemorrhage treatment and elucidate its potential biological mechanisms, thereby providing evidence to support treatment optimization. A comprehensive search of seven electronic databases (PubMed, Web of Science, Embase, Cochrane Library, China National Knowledge Infrastructure, VIP, and Wanfang Database) was conducted for studies published up to September 2023. Screening and data extraction were performed by a team of researchers. The Cochrane collaboration tool was utilized for risk bias assessment, and Revman 5.3 along with Stata 17.0 were employed for statistical analysis. We searched 254 literature, and 19 were included in this meta-analysis. The results showed that Dl-3-n-Butylphthalide improved the clinical efficacy rate (RR = 1.25, 95% CI 1.19-1.31; = 0.00), quality of life (MD = 13.93, 95% CI: 11.88-15.98; = 0.000), increased cerebral blood flow and velocity, reduced cerebral edema volume, Hcy concentration, and did not have obvious adverse reactions (RR = 0.68, 95% CI: 0.39-1.18; = 0.10). This meta-analysis is the first to demonstrate the potential of Dl-3-n-Butylphthalide in treating cerebral hemorrhage. It suggests that Dl-3-n-Butylphthalide may alleviate clinical symptoms by modulating neurological function and improving hemodynamics. Our findings provide robust evidence for incorporating Dl-3-n-Butylphthalide into cerebral hemorrhage treatment strategies, potentially guiding future clinical practice and research.
Exogenous brassinolide improves the antioxidant capacity of Pinellia ternata by enhancing the enzymatic and nonenzymatic defense systems under non-stress conditions
Brassinolide (BR) improves the antioxidant capacity of plants under various abiotic stresses. However, it is not clear about the effect of BR on the antioxidant capacity in plants under non-stress conditions. In the present study, the antioxidant defense response of Pinellia ternata was to be assessed by applying BR and propiconazole (Pcz) under non-stress conditions. BR treatment enhanced the flavonoid content, peroxidase, and ascorbate peroxidase (APX) activity by 12.31, 30.62, and 25.08% and led to an increase in 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity by 4.31% and a decrease in malondialdehyde content by 1.04%. Exogenous application of BR improved the expression levels of PAL, CHS, CHI, and DFR genes by 3. 18-, 3. 39-, 2. 21-, and 0.87-fold in flavonoid biosynthesis, PGI, PMI, and GME genes by 6. 60-, 1437. 79-, and 3.11-fold in ascorbic acid (ASA), biosynthesis, and γECs and GSHS genes by 6.08- and 2.61-fold in glutathione (GSH) biosynthesis pathway, and the expression of these genes were inhibited by Pcz treatment. In addition, BR treatment promoted the ASA–GSH cycle by enhancing the expression of APX, DHAR, and MDHAR genes, which were enhanced by 3. 33-, 157. 85-, and 154.91-fold, respectively. These results provided novel insights into the effect of BR on the antioxidant capacity in bulbil of P. ternata under non-stress conditions and useful knowledge of applying BR to enhance the antioxidant capacity of plants.
Regulation Mechanism of Exogenous Brassinolide on Bulbil Formation and Development in Pinellia ternata
The bulbil is the propagative organ of the P. ternata , which has a great effect on the yield of P. ternata . It is well known that plant hormones play important roles in bulbil formation and development. However, there is not clear about brassinolide (BR) regulation on bulbil formation and development. In this study, we revealed the effects of BR and BR biosynthesis inhibitors (propiconazole, Pcz) application on the histological observation, starch and sucrose metabolism, photosynthesis pathway, and hormone signaling pathway of P. ternata . The results showed that BR treatment reduced starch catabolism to maltodextrin and maltose in bulbil by decreasing BAM and ISA genes expression and increased cellulose catabolism to D-glucose in bulbil by enhancing edg and BGL genes expression. BR treatment enhanced the photosynthetic pigment content and potential maximum photosynthetic capacity and improved the photoprotection ability of P. ternata by increasing the dissipation of excess light energy to heat, thus reduced the photodamage in the PSII center. BR treatment increased the GA and BR content in bulbil of P. ternata , and decreased the ABA content in bulbil of P. ternata . Pcz treatment increased the level of GA, SL, ABA, and IAA in bulbil of P. ternata . BR regulated the signal transduction of BR, IAA, and ABA to regulate the formation and development of bulbil in P. ternata . These results provide molecular insight into BR regulation on bulbil formation and development.
Genomic selection with GWAS-identified QTL markers enhances prediction accuracy for quantitative traits in poplar (Populus deltoides)
Poplar ( Populus deltoides ) serves as a model tree species with economic importance for wood and biomass production. Genomic genetic improvement of traits is crucial for accelerating tree breeding programs. In this study, we systematically characterized phenotypic variation across ten traits related to growth, wood properties, disease resistance, and leaf morphology in 237 poplar accessions. Phenotypic variation analysis revealed substantial variability among individuals, with coefficients of variation ranging from 4.86% to 73.49%. Narrow-sense heritability estimates indicated genetic contributions ranging from 6.23% to 66.84% for ten traits. A genome-wide association study identified 69 significant quantitative trait loci (QTL) distributed across various chromosomes, strongly associated with traits and implicating 130 annotated genes such as late embryogenesis abundant protein, uridine nucleosidase, and MYB transcription factor. Furthermore, the effects of QTL alleles were significantly correlated with phenotypic values. The integration of multi-trait QTL as random effects into genomic selection (GS) models significantly enhanced prediction accuracy, with an increase ranging from 0.06 to 0.48. Specially, the Bayesian Ridge Regression (BRR) model exhibited superior prediction accuracy for multiple traits. This study provides critical insights into the genetic basis of important traits in poplar, facilitating accelerated breeding efforts and enhancing genetic gains in forestry. Poplar exhibits diverse genetic variation in growth, wood, and disease traits, with a GWAS identifying key loci; integrating these QTLs into genomic selection models enhances prediction accuracy and has the potential to accelerate genetic improvement.