Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,999
result(s) for
"Guo, Guo-Ping"
Sort by:
Ultrafast coherent control of a hole spin qubit in a germanium quantum dot
2022
Operation speed and coherence time are two core measures for the viability of a qubit. Strong spin-orbit interaction (SOI) and relatively weak hyperfine interaction make holes in germanium (Ge) intriguing candidates for spin qubits with rapid, all-electrical coherent control. Here we report ultrafast single-spin manipulation in a hole-based double quantum dot in a germanium hut wire (GHW). Mediated by the strong SOI, a Rabi frequency exceeding 540 MHz is observed at a magnetic field of 100 mT, setting a record for ultrafast spin qubit control in semiconductor systems. We demonstrate that the strong SOI of heavy holes (HHs) in our GHW, characterized by a very short spin-orbit length of 1.5 nm, enables the rapid gate operations we accomplish. Our results demonstrate the potential of ultrafast coherent control of hole spin qubits to meet the requirement of DiVincenzo’s criteria for a scalable quantum information processor.
Hole-spin qubits in germanium are promising candidates for rapid, all-electrical qubit control. Here the authors report Rabi oscillations with the record frequency of 540 MHz in a hole-based double quantum dot in a germanium hut wire, which is attributed to strong spin-orbit interaction of heavy holes.
Journal Article
Mitigating barren plateaus with transfer-learning-inspired parameter initializations
by
Wu, Yu-Chun
,
Han, Yong-Jian
,
Sun, Tai-Ping
in
Algorithms
,
Artificial intelligence
,
barren plateaus
2023
Variational quantum algorithms (VQAs) are widely applied in the noisy intermediate-scale quantum era and are expected to demonstrate quantum advantage. However, training VQAs faces difficulties, one of which is the so-called barren plateaus (BPs) phenomenon, where gradients of cost functions vanish exponentially with the number of qubits. In this paper, inspired by transfer learning, where knowledge of pre-solved tasks could be further used in a different but related work with training efficiency improved, we report a parameter initialization method to mitigate BP. In the method, a small-sized task is solved with a VQA. Then the ansatz and its optimum parameters are transferred to tasks with larger sizes. Numerical simulations show that this method could mitigate BP and improve training efficiency. A brief discussion on how this method can work well is also provided. This work provides a reference for mitigating BP, and therefore, VQAs could be applied to more practical problems.
Journal Article
Quantum homotopy perturbation method for nonlinear dissipative ordinary differential equations
by
Wu, Yu-Chun
,
Xue, Cheng
,
Guo, Guo-Ping
in
Algorithms
,
Exact solutions
,
homotopy perturbation method
2021
While quantum computing provides an exponential advantage in solving linear differential equations, there are relatively few quantum algorithms for solving nonlinear differential equations. In our work, based on the homotopy perturbation method, we propose a quantum algorithm for solving n -dimensional nonlinear dissipative ordinary differential equations (ODEs). Our algorithm first converts the original nonlinear ODEs into the other nonlinear ODEs which can be embedded into finite-dimensional linear ODEs. Then we solve the embedded linear ODEs with quantum linear ODEs algorithm and obtain a state ϵ -close to the normalized exact solution of the original nonlinear ODEs with success probability Ω(1). The complexity of our algorithm is O ( gηT poly(log( nT / ϵ ))), where η , g measure the decay of the solution. Our algorithm provides exponential improvement over the best classical algorithms or previous quantum algorithms in n or ϵ .
Journal Article
Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity
2018
Mechanical resonators are promising systems for storing and manipulating information. To transfer information between mechanical modes, either direct coupling or an interface between these modes is needed. In previous works, strong coupling between different modes in a single mechanical resonator and direct interaction between neighboring mechanical resonators have been demonstrated. However, coupling between distant mechanical resonators, which is a crucial request for long-distance classical and quantum information processing using mechanical devices, remains an experimental challenge. Here, we report the experimental observation of strong indirect coupling between separated mechanical resonators in a graphene-based electromechanical system. The coupling is mediated by a far-off-resonant phonon cavity through virtual excitations via a Raman-like process. By controlling the resonant frequency of the phonon cavity, the indirect coupling can be tuned in a wide range. Our results may lead to the development of gate-controlled all-mechanical devices and open up the possibility of long-distance quantum mechanical experiments.
Non-neighbouring mechanical resonators can interact via indirect coupling. Here, the authors leverage a resonant phonon cavity in a graphene-based electromechanical system to demonstrate strong indirect coupling between separated mechanical resonators.
Journal Article
An improved QFT-based quantum comparator and extended modular arithmetic using one ancilla qubit
2023
Quantum comparators and modular arithmetic are fundamental in many quantum algorithms. Current research mainly focuses on operations between two quantum states. However, various applications, such as integer factorization, optimization, and financial risk analysis, commonly require one of the inputs to be classical. It requires many ancillary qubits, especially when subsequent computations are involved. In this paper, we propose a quantum–classical comparator based on the quantum Fourier transform. Then we extend it to compare two quantum integers and modular arithmetic. Proposed operators only require up to one ancilla qubit, which is optimal for qubit resources. We analyze limitations in the current modular addition circuit and develop it to process arbitrary quantum states in the entire n -qubit space. The proposed algorithms reduce computing resources and make them valuable for noisy intermediate-scale quantum computers.
Journal Article
Dipole coupling of a hole double quantum dot in germanium hut wire to a microwave resonator
2020
The germanium (Ge) hut wire system has strong spin-orbit coupling, a long coherence time due to a very large heavy-light hole splitting, and the advantage of site-controlled large-scale hut wire positioning. These properties make the Ge hut wire a promising candidate for the realization of strong coupling of spin to superconducting resonators and scalability for multiple qubit coupling. We have coupled a reflection line resonator to a hole double quantum dot (DQD) formed in Ge hut wire. The amplitude and phase responses of the microwave resonator revealed that the charge stability diagrams of the DQD are in good agreement with those obtained from transport measurements. The DQD interdot tunneling rate is shown to be tunable from 6.2 GHz to 8.5 GHz, which demonstrates the ability to adjust the frequency detuning between the qubit and the resonator. Furthermore, we achieved a hole-resonator coupling strength of up to 15 MHz, with a charge qubit decoherence rate of 0.28 GHz. Meanwhile the hole spin-resonator coupling rate was estimated to be 3 MHz. These results suggest that holes of a DQD in a Ge hut wire are dipole coupled to microwave photons, potentially enabling tunable hole spin-photon interactions in Ge with an inherent spin-orbit coupling.
Journal Article
An efficient quantum algorithm for independent component analysis
2024
Independent component analysis (ICA) is a fundamental data processing technique to decompose the captured signals into as independent as possible components. Computing the contrast function, which serves as a measure of the independence of signals, is vital and costs major computing resources in ICA. This paper presents a quantum algorithm that focuses on computing a specified contrast function on a quantum computer. Using the quantum acceleration in matrix operations, we efficiently deal with Gram matrices and estimate the contrast function with the complexity of O ( ϵ 1 − 2 poly log ( N / ϵ 1 ) ) . This estimation subprogram, combined with the classical optimization framework, builds up our ICA algorithm, which exponentially reduces the complexity dependence on the data scale compared with algorithms using only classical computers. The outperformance is further supported by numerical experiments, while our algorithm is then applied for the separation of a transcriptomic dataset and for financial time series forecasting, to predict the Nikkei 225 opening index to show its potential application prospect.
Journal Article
A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network
2017
This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS). The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN) node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF) module, which is only used for time synchronization between different nodes, with accuracy up to 1 μs. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF) for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM). The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS) signal.
Journal Article
Entanglement area law for shallow and deep quantum neural network states
by
Wu, Yu-Chun
,
Jia, Zhih-Ahn
,
Wei, Lu
in
Artificial neural networks
,
Entanglement
,
entanglement entropy
2020
A study of the artificial neural network representation of quantum many-body states is presented. The locality and entanglement properties of states for shallow and deep quantum neural networks are investigated in detail. By introducing the notion of local quasi-product states, for which the locally connected shallow feed-forward neural network states and restricted Boltzmann machine states are special cases, we show that Rényi entanglement entropies of all these states obey the entanglement area law. Besides, we also investigate the entanglement features of deep Boltzmann machine states and show that locality constraints imposed on the neural networks make the states obey the entanglement area law. Finally, as an application, we apply the notion of Rényi entanglement entropy to understand the power of neural networks, and show that image classification problems can be efficiently solved must obey the area law.
Journal Article
On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom
2016
In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process.
Harnessing multiple degrees of freedom of quantum states on chip could improve quantum information processing. Here, the authors demonstrate coherent conversion of quantum states between path, polarization and transverse waveguide-mode degrees of freedom in a quantum photonic integrated circuit.
Journal Article