Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
100
result(s) for
"Guo, Hongye"
Sort by:
Momentum transfer on impact damping by liquid crystalline elastomers
2023
The effect of elastomeric damping pads, softening the collision of hard objects, is investigated comparing the reference silicone elastomer and the polydomain nematic liquid crystalline elastomer, which has a far superior internal dissipation mechanism. We specifically focus not just on the energy dissipation, but also on the momentum conservation and transfer during the collision, because the latter determines the force exerted on the target and/or the impactor—and it is the force that does the damage during the short time of an impact, while the energy might be dissipated on a much longer time scale. To better assess the momentum transfer, we compare the collision with a very heavy object and the collision with a comparable mass, when some of the impact momentum is retained in the target receding away from the collision. We also propose a method to estimate the optimal thickness of an elastomer damping pad for minimising the energy in impactor rebound. It has been found that thicker pads introduce a large elastic rebound and the optimal thickness is therefore the thinnest possible pad that does not suffer from mechanical failure. We find good agreement between our estimate of the minimal thickness of the elastomer before the puncture through occurs and the experimental observations.
Journal Article
Machine Learning-Based Fatigue Life Prediction for E36 Steel Welded Joints
by
Song, Zongxian
,
Wang, Jifeng
,
Guo, Hongye
in
Artificial neural networks
,
Correlation analysis
,
Crack initiation
2025
E36 steel, widely used in shipbuilding and offshore structures, offers moderate strength and excellent low-temperature toughness. However, its welded joints are highly susceptible to fatigue failure. Cracks typically initiate at weld toes or within the heat-affected zone (HAZ), severely limiting the fatigue life of fabricated components. Traditional life prediction methods are complex, inefficient, and lack accuracy. This study proposes a machine learning (ML) framework for efficient fatigue life prediction of E36 welded joints. Welded specimens using SQJ501 filler wire on prepared E36 steel established a dataset from 23 original fatigue test data points. The dataset was expanded via Z-parameter model fitting, with data scarcity addressed using SMOTE. Pearson correlation analysis validated data relationships. After grid-optimized training on the augmented data, models were evaluated on the original dataset. Results demonstrate that the machine learning models significantly outperformed the Z-parameter formula (R2 = 0.643, MAPE = 16.15%). The artificial neural network (R2 = 0.972, MAPE = 4.45%) delivered the best overall performance, while the random forest model exhibited high consistency between validation (R2 = 0.888, MAPE = 6.34%) and testing sets (R2 = 0.897), with its error being significantly lower than that of support vector regression.
Journal Article
Synthesis and Anti-Inflammatory Activity of 1-Methylhydantoin Cinnamoyl Imides
2022
In this study, 1-methylhydantoin cinnamic imides were synthesized from 1-methylhydantoin and trans-cinnamic acid, and their anti-inflammatory activity was investigated. The anti-inflammatory activity in vitro was evaluated by measuring the contents of NO, TNF-α and IL-1β in the supernatant of RAW264.7 cells stimulated by LPS. The cytotoxicity of 1-methylhydantoin cinnamoyl imides on RAW264.7 cells was detected using the CCK-8 method. The results showed that compounds 2 and 4 can significantly inhibit the release of NO and reduce the secretion of TNF-α and IL-1β. Compound 3 inhibited the production of TNF-α. The inhibition rate of COX was evaluated in vitro. The in vivo anti-inflammatory activities of the five compounds were evaluated by establishing an animal model of xylene ear swelling. The results showed that 1-methylhydantoin cinnamic imides could alleviate xylene-induced ear edema in mice in a dose-dependent manner. Among them, the effect of compound 5 was the most significant. Under the action of high dosage, its ear swelling inhibition rate was as high as 52.08%.
Journal Article
Granulocytic Myeloid-Derived Suppressor Cell Exosomal Prostaglandin E2 Ameliorates Collagen-Induced Arthritis by Enhancing IL-10+ B Cells
2020
The results of recent studies have shown that granulocytic-myeloid derived suppressor cells (G-MDSCs) can secrete exosomes that transport various biologically active molecules with regulatory effects on immune cells. However, their roles in autoimmune diseases such as rheumatoid arthritis remain to be further elucidated. In the present study, we investigated the influence of exosomes from G-MDSCs on the humoral immune response in murine collagen-induced arthritis (CIA). G-MDSCs exosomes-treated mice showed lower arthritis index values and decreased inflammatory cell infiltration. Treatment with G-MDSCs exosomes promoted splenic B cells to secrete IL-10 both in vivo and in vitro . In addition, a decrease in the proportion of plasma cells and follicular helper T cells was observed in drainage lymph nodes from G-MDSCs exosomes-treated mice. Moreover, lower serum levels of IgG were detected in G-MDSCs exosomes-treated mice, indicating an alteration of the humoral environment. Mechanistic studies showed that exosomal prostaglandin E2 (PGE2) produced by G-MDSCs upregulated the phosphorylation levels of GSK-3β and CREB, which play a key role in the production of IL-10 + B cells. Taken together, our findings demonstrated that G-MDSC exosomal PGE2 attenuates CIA in mice by promoting the generation of IL-10 + Breg cells.
Journal Article
Rana chensinensis Ovum Oil Based on CO2 Supercritical Fluid Extraction: Response Surface Methodology Optimization and Unsaturated Fatty Acid Ingredient Analysis
by
Zhang, Jianqiu
,
Wang, Zhongyao
,
Gan, Yuanshuai
in
Box–Behnken design
,
By products
,
by-product
2020
Rana chensinensis ovum oil (RCOO) is an emerging source of unsaturated fatty acids (UFAs), but it is lacking in green and efficient extraction methods. In this work, using the response surface strategy, we developed a green and efficient CO2 supercritical fluid extraction (CO2-SFE) technology for RCOO. The response surface methodology (RSM), based on the Box–Behnken Design (BBD), was used to investigate the influence of four independent factors (pressure, flow, temperature, and time) on the yield of RCOO in the CO2-SFE process, and UPLC-ESI-Q-TOP-MS and HPLC were used to identify and analyze the principal UFA components of RCOO. According to the BBD response surface model, the optimal CO2-SFE condition of RCOO was pressure 29 MPa, flow 82 L/h, temperature 50 °C, and time 132 min, and the corresponding predicted optimal yield was 13.61%. The actual optimal yield obtained from the model verification was 13.29 ± 0.37%, and the average error with the predicted value was 0.38 ± 0.27%. The six principal UFAs identified in RCOO included eicosapentaenoic acid (EPA), α-linolenic acid (ALA), docosahexaenoic acid (DHA), arachidonic acid (ARA), linoleic acid (LA), and oleic acid (OA), which were important biologically active ingredients in RCOO. Pearson correlation analysis showed that the yield of these UFAs was closely related to the yield of RCOO (the correlation coefficients were greater than 0.9). Therefore, under optimal conditions, the yield of RCOO and principal UFAs always reached the optimal value at the same time. Based on the above results, this work realized the optimization of CO2-SFE green extraction process and the confirmation of principal bioactive ingredients of the extract, which laid a foundation for the green production of RCOO.
Journal Article
Modeling and Performance of the IEEE 802.11p Broadcasting for Intra-Platoon Communication
2018
Road capacity, traffic safety, and energy efficiency can be extremely improved by forming platoons with a small intra-vehicle spacing. Automated controllers obtain vehicle speed, acceleration, and position through vehicular ad hoc networks (VANETs), which allows the performance of platoon communication to make a significant impact on the stability of the platoon. To the best of our knowledge, there is not much research relating to packet delay and packet dropping rate of platoon communication based on the IEEE 802.11p broadcasting. In this paper, we introduce platoon structure model, vehicle control model, and communication model for a single platoon scenario. By utilizing Markov process and M/G/1/K queuing theory, we put forward an analytical model to assess the property of intra-vehicle communication. The analytical model is validated by simulations and the influence of communication parameters on intra-vehicle communication performance are discussed. In addition, the experimental results demonstrate that the IEEE 802.11p-based intra-vehicle communication guarantee the stability of platoon.
Journal Article
Protein-Based Fingerprint Analysis for the Identification of Ranae Oviductus Using RP-HPLC
2019
This work demonstrated a method combining reversed-phase high-performance liquid chromatography (RP-HPLC) with chemometrics analysis to identify the authenticity of Ranae Oviductus. The fingerprint chromatograms of the Ranae Oviductus protein were established through an Agilent Zorbax 300SB-C8 column and diode array detection at 215 nm, using 0.085% TFA (v/v) in acetonitrile (A) and 0.1% TFA in ultrapure water (B) as mobile phase. The similarity was in the range of 0.779–0.980. The fingerprint chromatogram of Ranae Oviductus showed a significant difference with counterfeit products. Hierarchical clustering analysis (HCA) and principal component analysis (PCA) successfully identified Ranae Oviductus from the samples. These results indicated that the method established in this work was reliable.
Journal Article
Mesenchymal Stem Cell Enhances the Function of MDSCs in Experimental Sjögren Syndrome
2020
Primary Sjögren’s syndrome (pSS) is a progressive systemic autoimmune disease characterized by lymphocytic infiltrates in exocrine glands, leading to the injury of salivary and lachrymal glands. Mesenchymal stem cells (MSCs) have been demonstrated to exert great potential in the treatment of various autoimmune diseases. Although MSCs have provide an effective therapeutic approach for SS treatment, the underlying mechanisms are still elusive. Our previous study has shown the reduced suppressive capacity of myeloid-derived suppressor cells (MDSCs) advanced the progression of experimental Sjögren’s syndrome (ESS). In this study, we found that BM-MSCs significantly enhanced the suppressive function of MDSCs with high levels of Arginase and NO, decreased the levels of CD40, CD80, CD86, and MHC-II expression on MDSCs, thus attenuating the disease progression in ESS mice. Furthermore, the enhanced suppressive function of MDSCs was mediated by BM-MSC-secreted TGF-β, and the therapeutic effect of BM-MSCs in inhibiting ESS was almost abolished after silencing TGF-β in BM-MSCs. Taken together, our results demonstrated that BM-MSCs alleviated the ESS progression by up-regulating the immunosuppressive effect of MDSCs through TGF-β/Smad pathway, offering a novel mechanism for MSCs in the treatment of pSS.
Journal Article
Antitussive and Anti-inflammatory Dual-active Agents Developed from Natural Product Lead Compound 1-Methylhydantoin
2019
Natural products play an important role in drug discovery. This work employed a natural product 1-methylhydantoin as the lead compound to develop novel dual-active drugs. 1-Methylhydantoin was isolated from Oviductus Ranae, which is a traditional Chinese medicine that has been used for tussive and inflammation treatment for a long time. An in silico study screened the more active 1-methylhydantoin derivatives. Antitussive assessment indicated that the newly synthesized agent had similar bioactivity with the natural product. An anti-inflammatory model used xylene induced ear edema model. At the same dosage (100 mg/Kg), the newly prepared agent had an inhibition rate 53.18% which was much higher than that of the lead compound (22.69%). The results might be ascribed to the cyclooxygenases-1 (COX-1) and cyclooxygenases-2 (COX-2) selectivity, and the fitness of the compound, and the binding pocket. The anti-particulate matter (PM 2.5) acute pneumonia was evaluated through an in vivo model constructed by nasal instillation with PM 2.5 suspension. The results of the above models suggested that this novel agent had remarkable antitussive, anti-inflammatory, and anti-PM 2.5 acute pneumonia activities.
Journal Article
CD4+ T Cell‐Released Extracellular Vesicles Potentiate the Efficacy of the HBsAg Vaccine by Enhancing B Cell Responses
2019
T cells secrete bioactive extracellular vesicles (EVs), but the potential biological effects of CD4+ T cell EVs are not clear. The main purpose of this study is to investigate the effects of CD4+ T cell–derived EVs on B cell responses and examine their role in antigen‐mediated humoral immune responses. In this study, CD4+ T cell EVs are purified from activated CD4+ T cells in vitro. After immunization with the Hepatitis B surface antigen (HBsAg) vaccine, CD4+ T cell EVs‐treated mice show stronger humoral immune responses, which is indicated by a greater Hepatitis B surface antibody (HBsAb) level in serum and a greater proportion of plasma cells in bone marrow. In addition, it is found that EVs released from activated CD4+ T cells play an important role in B cell responses in vitro, which significantly promote B cell activation, proliferation, and antibody production. Interestingly, antigen‐specific CD4+ T cell EVs are found to be more efficient than control EVs in enhancing B cell responses. Furthermore, it is shown that CD40 ligand (CD40L) is involved in CD4+ T cell EVs‐mediated B cell responses. Overall, the results have demonstrated that CD4+ T cell EVs enhance B cell responses and serve as a novel immunomodulator to promote antigen‐specific humoral immune responses. CD4+ T cells release bioactive extracellular vesicles. CD4+ T cells extracellular vesicles (EVs) can enhance B cell responses by CD40 ligand (CD40L), which significantly promote B cell activation, proliferation, and antibody production in vitro. In addition, the application of CD4+ T cell EVs further promotes antigen‐specific humoral immune responses in Hepatitis B surface antigen (HBsAg)‐immunized mice.
Journal Article