Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
656 result(s) for "Guo, Pengcheng"
Sort by:
Swing Trend Prediction of Main Guide Bearing in Hydropower Units Based on MFS-DCGNN
Hydropower units are the core equipment of hydropower stations, and research on the fault prediction and health management of these units can help improve their safety, stability, and the level of reliable operation and can effectively reduce costs. Therefore, it is necessary to predict the swing trend of these units. Firstly, this study considers the influence of various factors, such as electrical, mechanical, and hydraulic swing factors, on the swing signal of the main guide bearing y-axis. Before swing trend prediction, the multi-index feature selection algorithm is used to obtain suitable state variables, and the low-dimensional effective feature subset is obtained using the Pearson correlation coefficient and distance correlation coefficient algorithms. Secondly, the dilated convolution graph neural network (DCGNN) algorithm, with a dilated convolution graph, is used to predict the swing trend of the main guide bearing. Existing GNN methods rely heavily on predefined graph structures for prediction. The DCGNN algorithm can solve the problem of spatial dependence between variables without defining the graph structure and provides the adjacency matrix of the graph learning layer simulation, avoiding the over-smoothing problem often seen in graph convolutional networks; furthermore, it effectively improves the prediction accuracy. The experimental results showed that, compared with the RNN-GRU, LSTNet, and TAP-LSTM algorithms, the MAEs of the DCGNN algorithm decreased by 6.05%, 6.32%, and 3.04%; the RMSEs decreased by 9.21%, 9.01%, and 2.83%; and the CORR values increased by 0.63%, 1.05%, and 0.37%, respectively. Thus, the prediction accuracy was effectively improved.
Abnormal-Sound Diagnosis for Kaplan Hydroelectric Generating Units Based on Continuous Wavelet Transform and Transfer Learning
To realize abnormal-sound diagnosis in hydroelectric generating units, this study proposes a method based on continuous wavelet transform (CWT) and Transfer Learning (TL). A denoising algorithm utilizing spectral noise-gate technology is proposed to enhance fault characteristics in hydroelectric units. Subsequently, Continuous Wavelet Transform is applied to obtain frequency components, and the results are converted into a series of pseudo-color images to highlight information differences. A transfer model is subsequently developed for feature extraction, utilizing simplified fully connected layers to reduce modeling costs. The study optimizes key parameters during the signal-processing stage and achieves an improved parameter-setting scheme. Acoustic signals corresponding to four different fault states and a normal state are collected from a Kaplan hydroelectric generating unit in a hydropower station. The signal diagnosis accuracy rates before filtering are 84.83% and 95.14%. These rates significantly improved to 98.88% and 98.06%, respectively, demonstrating the effectiveness of the noise-reduction process. To demonstrate the superiority of the improved model in this work, a series of classic deep-learning models, including AlexNet, Resnet18, and MobileNetV3, are used for comparative analysis. The proposed method can effectively diagnose faults in Kaplan hydroelectric generating units with a high accuracy, which is crucial for the daily monitoring and maintenance of these units.
An Anti-Interrupted-Sampling Repeater Jamming Method Based on Simulated Annealing–2-Optimization Parallel Optimization of Waveforms and Fractional Domain Extraction
Faced with increasingly complex electronic jamming environments, intra-pulse agility has become a primary method of anti-interrupted-sampling repeater jamming (ISRJ) for radar systems. However, existing intra-pulse agile signals suffer from high autocorrelation sidelobe levels and limited jamming suppression capabilities. These issues restrict the performance of intra-pulse agile signals in complex electromagnetic environments.This paper proposes an anti-interrupted-sampling repeater jamming method based on Simulated Annealing–2-optimization (SA-2opt) parallel optimization of waveforms and fractional domain extraction. Firstly, the proposed method employs the SA-2opt parallel optimization algorithm to optimize the joint frequency and chirp rate encoding waveform. Then, the received signal is subjected to the fractional Fourier transform (FrFT) and inverse transform to extract the target signal. Finally, jamming detection is conducted based on the multi-dimensional features of the pulse-compressed signal. After this detection, a time-domain filter is constructed to achieve jamming suppression. The optimized waveform exhibits the following advantages: the sub-pulses are orthogonal to each other, and autocorrelation sidelobe levels are as low as -20.7dB. The method proposed in this paper can achieve anti-ISRJ in the case of a high jamming-to-signal ratio (JSR). Simulation experiments validate both the effectiveness of the optimized waveform in achieving low autocorrelation sidelobes and the anti-ISRJ performance of the proposed method.
Investigation on unstable flow characteristics and energy dissipation in Pelton turbine
The internal flow scale of a Pelton turbine is variable, and the interaction between the jet and the bucket has strong transient characteristics, resulting in an incomplete understanding of its internal vortex structure evolution and energy dissipation mechanisms. In order to reveal the influence of vortices on the flow regime and energy dissipation mechanisms in the turbine, this paper establishes the correlation between the unsteady flow characteristics and energy dissipation inside the Pelton turbine based on the energy balance equation and quantifies the energy losses inside the turbine. The results indicate that vortex structures present a non-uniform distribution inside the jet, which disrupts the uniformity of the jet velocity distribution, resulting in an uneven distribution of high-vorticity zones on the bucket surfaces and intensifying flow interference among the buckets. The strong shear flow caused by the downstream flow detachment of the needle guide, the turbulent boundary layer on the jet surface, and the wake effect downstream of the needle tip are the main reasons for the dissipation of fluid kinetic energy. The distribution range of energy loss on the rotating bucket closely corresponds to the position of the high-vorticity zone. Energy dissipation inside the turbine is primarily in the form of turbulent kinetic energy, and the injectors and runner are the primary energy dissipation components. Moreover, inside the injectors, each form of energy loss remains relatively constant, whereas inside the runner, its rotation induces fluctuating energy losses attributed to Reynolds stress work. The results contribute to an enhanced understanding of the energy dissipation characteristics and complex flow mechanisms within the turbine, providing reference for the optimisation and efficient operation of the multi-nozzle Pelton turbine.
Numerical investigation of air admission influence on the precessing vortex rope in a Francis turbine
Precessing vortex rope (PVR) plays a key role in inducing hydraulic resonance in Francis turbines operating at partial load, possibly degrading power plant stability and availability. Air injection into the runner cone is a suitable mitigating alternative; however, the influence mechanism of air injection on PVR remains unclear. The principal objective of this study was to establish response relationships between the characteristic parameters and air injection by the method of computational fluid dynamics (CFD) considering the fluid components of water, water vapour and air. The findings show that cavitation flow can be completely suppressed by slight air injection; however, the helical vortex structures are persisted at 1.0% and 2.0% air volume fractions, and the static pressure recovery is improved together with a slight increase in the hydraulic loss. At 3.0% air volume fraction, the vortex structure completely disappears, leaving an umbrella-shaped structure, with no pressure vibration arising in the turbine. Moreover, the physical mechanism of reducing the pressure amplitudes is clarified. This results clarify the influence mechanism of air injection on PVR, and contribute to steadily extending the flexibility of the operating range of the turbine during the engineering application.
G protein coupled estrogen receptor attenuates mechanical stress-mediated apoptosis of chondrocyte in osteoarthritis via suppression of Piezo1
Background Apoptosis of chondrocyte is involved in osteoarthritis (OA) pathogenesis, and mechanical stress plays a key role in this process by activation of Piezo1. However, the negative regulation of signal conduction mediated by mechanical stress is still unclear. Here, we elucidate that the critical role of G protein coupled estrogen receptor (GPER) in the regulation of mechanical stress-mediated signal transduction and chondrocyte apoptosis. Methods The gene expression profile was detected by gene chip upon silencing Piezo1. The expression of GPER in cartilage tissue taken from the clinical patients was detected by RT-PCR and Western blot as well as immunohistochemistry, and the correlation between GPER expression and OA was also investigated. The chondrocytes exposed to mechanical stress were treated with estrogen, G-1, G15, GPER-siRNA and YAP (Yes-associated protein)-siRNA. The cell viability of chondrocytes was measured. The expression of polymerized actin and Piezo1 as well as the subcellular localization of YAP was observed under laser confocal microscope. Western blot confirmed the changes of YAP/ Rho GTPase activating protein 29 (ARHGAP29) /RhoA/LIMK /Cofilin pathway. The knee specimens of osteoarthritis model were stained with safranin and green. OARSI score was used to evaluate the joint lesions. The expressions of GPER and YAP were detected by immunochemistry. Results Expression profiles of Piezo1- silenced chondrocytes showed that GPER expression was significantly upregulated. Moreover, GPER was negatively correlated with cartilage degeneration during OA pathogenesis. In addition, we uncovered that GPER directly targeted YAP and broadly restrained mechanical stress-triggered actin polymerization. Mechanism studies revealed that GPER inhibited mechanical stress-mediated RhoA/LIMK/cofilin pathway, as well as the actin polymerization, by promoting expression of YAP and ARHGAP29, and the YAP nuclear localization, eventually causing the inhibition of Piezo1. YAP was obviously decreased in degenerated cartilage. Silencing YAP caused significantly increased actin polymerization and activation of Piezo1, and an increase of chondrocyte apoptosis. In addition, intra-articular injection of G-1 to OA rat effectively attenuated cartilage degeneration. Conclusion We propose a novel regulatory mechanism underlying mechanical stress-mediated apoptosis of chondrocyte and elucidate the potential application value of GPER as therapy targets for OA.
Salt stress activates the CDK8-AHL10-SUVH2/9 module to dynamically regulate salt tolerance in Arabidopsis
Salt stress has devastating effects on agriculture, yet the key regulators modulating the transcriptional dynamics of salt-responsive genes remain largely elusive in plants. Here, we discover that salt stress substantially induces the kinase activity of Mediator cyclin-dependent kinase 8 (CDK8), which is essential for its positive role in regulating salt tolerance. CDK8 is identified to phosphorylate AT-hook motif nuclear-localized protein 10 (AHL10) at serine 314, leading to its degradation under salt stress. Consistently, AHL10 is found to negatively regulate salt tolerance. Transcriptome analysis further indicates that CDK8 regulates over 20% of salt-responsive genes, half of which are co-regulated by AHL10. Moreover, AHL10 is revealed to recruit SU(VAR)3-9 homologs (SUVH2/9) to AT-rich DNA sequences in the nuclear matrix-attachment regions (MARs) of salt-responsive gene promoters, facilitating H3K9me2 deposition and repressing salt-responsive genes. Our study thereby has identified the CDK8-AHL10-SUVH2/9 module as a key molecular switch controlling transcriptional dynamics in response to salt stress. The authors demonstrate that salt stress activates CDK8, which phosphorylates AHL10 and promotes its degradation. AHL10 is involved in recruiting SUVH2/9 to repress salt-responsive genes. The CDK8-AHL10-SUVH2/9 module is critical for transcriptional dynamics in response to salt stress.
Optimal Scheduling of a Cascade Hydropower Energy Storage System for Solar and Wind Energy Accommodation
The massive grid integration of renewable energy necessitates frequent and rapid response of hydropower output, which has brought enormous challenges to the hydropower operation and new opportunities for hydropower development. To investigate feasible solutions for complementary systems to cope with the energy transition in the context of the constantly changing role of the hydropower plant and the rapid evolution of wind and solar power, the short-term coordinated scheduling model is developed for the wind–solar–hydro hybrid pumped storage (WSHPS) system with peak shaving operation. The effects of different reservoir inflow conditions, different wind and solar power forecast output, and installed capacity of pumping station on the performance of WSHPS system are analyzed. The results show that compared with the wind–solar–hydro hybrid (WSH) system, the total power generation of the WSHPS system in the dry, normal, and wet year increased by 10.69%, 11.40%, and 11.27% respectively. The solar curtailment decreased by 68.97%, 61.61%, and 48.43%, respectively, and the wind curtailment decreased by 76.14%, 58.48%, and 50.91%, respectively. The high proportion of wind and solar energy connected to the grid in summer leads to large net load fluctuations and serious energy curtailment. The increase in the installed capacity of the pumping station will promote the consumption of wind and solar energy in the WSHPS system. The model proposed in this paper can improve the operational flexibility of hydropower station and promote the consumption of wind and solar energy, which provides a reference for the research of cascade hydropower energy storage system.
Influence of tip clearance on pressure fluctuations in an axial flow pump
Rotor-stator interaction in axial pumps can produce pressure fluctuations and further vibrations even damage to the pump system in some extreme case. In this paper, the influence of tip clearance on pressure fluctuations in an axial flow water pump has been investigated by numerical method. Three-dimensional unsteady flow in the axial flow water pump has been simulated with different tip clearances between the impeller blade tip and the casing wall. In addition to monitoring pressure fluctuations at some typical points, a new method based on pressure statistics was proposed to determine pressure fluctuations at all grid nodes inside the whole pump. The comparison shows that the existence of impeller tip clearance magnifies the pressure fluctuations in the impeller region, from the hub to shroud. However, the effect on pressure fluctuation in the diffuser region is not evident. Furthermore, the tip clearance vortex has also been examined under different tip clearances.
A novel approach to alleviate acetaminophen-induced hepatotoxicity with hybrid balloon flower root-derived exosome-like nanoparticles (BDEs) with silymarin via inhibition of hepatocyte MAPK pathway and apoptosis
Introduction Balloon flower root-derived exosome-like nanoparticles (BDEs) have recently been proposed as physiologically active molecules with no cytotoxicity. However, the therapeutic effects of drug-induced hepatotoxicity of BDEs have not been elucidated. BDEs contain a large amount of platycodin D, which is widely known to be effective in regulating inflammation and ameliorating systemic toxicity. Thus, the main therapeutic activity of BDEs is attributed to inhibiting the inflammatory response and alleviating toxicity. In this study, we fabricated the hybrid BDEs fused with liposomes containing silymarin (SM) to enhance the synergistic effect on inhibition of acetaminophen-induced hepatotoxicity (APAP). Objective Considering the potential therapeutic effects of BDEs, and the potential to achieve synergistic effects to improve therapeutic outcomes, we constructed hybrid BDEs with a soy lecithin-based liposome loaded with SM. Since liposomes can provide higher thermal stability and have greater structural integrity, these might be more resistant to clearance and enzymatic degradation of drug molecules. Methods Hybrid BDEs with liposome-loaded SM (BDEs@lipo-SM) were fabricated by thin-film hydration and extrusion. BDEs@lipo-SM were characterized using dynamic light scattering and high-performance liquid chromatography. After confirmation of the physical properties of BDEs@lipo-SM, various therapeutic properties were evaluated. Results BDEs@lipo-SM were internalized by hepatocytes and immune cells and significantly decreased mRNA expression of apoptosis and inflammation-relevant cytokines by inhibiting the hepatocyte MAPK pathway. BDEs@lipo-SM significantly induced an increase in glutathione levels and inhibited APAP-induced hepatotoxicity. Conclusion From this study, we know that BDEs are reliable and safe nanovesicles containing natural metabolites derived from balloon flower, and they can facilitate intercellular communication. BDEs are also easily modified to enhance drug loading capacity, targeting effects, and long-term accumulation in vivo. BDEs@lipo-SM have therapeutic benefits for acute liver injury and can alleviate cell death and toxicity. They can be efficiently delivered to the liver and effectively inhibit APAP-induced hepatotoxicity by inhibiting the MAPK signaling pathway and apoptosis, which accelerates liver recovery in the APAP-induced acute liver injury model. These findings highlight that BDEs represent an attractive delivery vehicle for drug delivery. Graphical abstract