Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,156 result(s) for "Gupta, Anand"
Sort by:
Biotransformation of chromium by root nodule bacteria Sinorhizobium sp. SAR1
The present study aims to address the problem of chromium (Cr) toxicity by providing important insights into the mechanisms involved in its bioremediation. Among the 22 Rhizobium and Sinorhizobium isolates obtained from Sesbania sesban root nodules, Sinorhizobium sp. SAR1 (JX174035.1) tolerated the maximum Cr concentration (1mM) and hence was used for further studies. The excess secretion of extra polymeric substances, as seen from scanning electron micrographs, could be a probable mechanism of adaptation to the Cr stress. The Energy dispersive X-ray spectroscopy data did not show any peaks of Cr. The biosorption studies done on the isolate gave maximum adsorption capacity as 285.71mg/g. The isotherm studies showed a better fit to Langmuir isotherm. The Weber and Morris plot established that the phenomenon of adsorption was governed by film diffusion mechanism. The FTIR analysis suggested the role of cell wall components and extracellular polymeric substances in Cr adsorption to the biomass of Sinorhizobium. On the basis of these results a compiled mechanism of Cr (VI) adsorption and its biotransformation into Cr (III) by Sinorhizobium sp. SAR1 is explained. This work outlines a comprehensive detail for the exact phenomenon of Cr biotransformation by Sinorhizobium sp. SAR1. These results may further help in developing and enhancing effective bioremediation approaches.
Formulation optimization of Docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity
Poor bioavailability of Docetaxel (DCT) arising due to its low aqueous solubility and permeability limits its clinical utility. The aim of the present study was to develop DCT loaded self-emulsified drug delivery systems (D-SEDDS) and evaluate its potential ability to improve the oral bioavailability and therapeutic efficacy of DCT. D-SEDDS were characterized for their in vitro antitumor activity, in situ single pass intestinal perfusion (SPIP), bioavailability, chylomicron flow blocking study and bio-distribution profile. The D-SEDDS were prepared using Capryol 90, Vitamin E TPGS, Gelucire 44/14 and Transcutol HP with a ratio of 32.7/29.4/8.3/29.6 using D-Optimal Mixture Design. The solubility of DCT was improved upto 50 mg/mL. The oral bioavailability of the D-SEDDS in rats (21.84 ± 3.12%) was increased by 3.19 fold than orally administered Taxotere (6.85 ± 1.82%). The enhanced bioavailability was probably due to increase in solubility and permeability. In SPIP, effective permeability of D-SEDDS was significantly higher than Taxotere. D-SEDDS showed 25 fold more in vitro cytotoxic activity compared to free DCT. Chylomicron flow blocking study and tissue distribution demonstrated the intestinal lymphatic transport of D-SEDDS and higher retention in tumor than Taxotere. The data suggests that D-SEDDS showed desired stability, enhanced oral bioavailability and in vitro antitumor efficacy.
Emerging role of cannabinoids and synthetic cannabinoid receptor 1/cannabinoid receptor 2 receptor agonists in cancer treatment and chemotherapy-associated cancer management
Cannabis was extensively utilized for its medicinal properties till the 19th century. A steep decline in its medicinal usage was observed later due to its emergence as an illegal recreational drug. Advances in technology and scientific findings led to the discovery of delta-9-tetrahydrocannabinol (THC), the primary psychoactive compound of cannabis, that further led to the discovery of endogenous cannabinoids system consisting of G-protein-coupled receptors - cannabinoid receptor 1 and cannabinoid receptor 2 along with their ligands, mainly anandamide and 2-arachidonoylglycerol. Endocannabinoid (EC) is shown to be a modulator not only for physiological functions but also for the immune system, endocrine network, and central nervous system. Medicinal research and meta-data analysis over the last few decades have shown a significant potential for both THC and cannabidiol (CBD) to exert palliative effects. People suffering from many forms of advanced stages of cancers undergo chemotherapy-induced nausea and vomiting followed by severe and chronic neuropathic pain and weight loss. THC and CBD exhibit effective analgesic, anxiolytic, and appetite-stimulating effect on patients suffering from cancer. Drugs currently available in the market to treat such chemotherapy-induced cancer-related ailments are Sativex (GW Pharmaceutical), Dronabinol (Unimed Pharmaceuticals), and Nabilone (Valeant Pharmaceuticals). Apart from exerting palliative effects, THC also shows promising role in the treatment of cancer growth, neurodegenerative diseases (multiple sclerosis and Alzheimer's disease), and alcohol addiction and hence should be exploited for potential benefits. The current review discusses the nature and role of CB receptors, specific applications of cannabinoids, and major studies that have assessed the role of cannabinoids in cancer management.
Analysis of strength anisotropy and correlation between UCS and point load test in augen gneiss at varying anisotropic angles
The strength and deformation behavior of rocks under different loading conditions are crucial for underground excavations, mining, foundations, and various civil engineering constructions, as they directly influence the stability of such structures. Understanding the anisotropic behaviors of rock through laboratory tests, such as the Uniaxial Compressive Strength (UCS) test and Point Load Test (PLT) on metamorphic or foliated rocks, provides essential information. Precise and standard laboratory tests reveal more insight into strength behaviors as the loading direction changes from 0° to 90°. The results exhibit a strong correlation between rock strength and anisotropic angle (β), which can be expressed mathematically in second-order parabolic equations. The mineral composition and its alignment greatly influence the rock’s anisotropy. Furthermore, a strong positive linear relationship was found between UCS and PLT in both a generalized form and individual correlation conditions. These findings provide useful correlations and anisotropy-based insights that can be directly applied to the safe design, stability assessment, and optimization of underground structures, foundations, and slope excavations, as well as drilling and blasting work in anisotropic rock masses. These developed equations can now be used as an alternative to expensive and complex laboratory tests.
Altered glucose and lipid homeostasis in liver and adipose tissue pre-dispose inducible NOS knockout mice to insulin resistance
On the basis of diet induced obesity and KO mice models, nitric oxide is implied to play an important role in the initiation of dyslipidemia induced insulin resistance. However, outcomes using iNOS KO mice have so far remained inconclusive. The present study aimed to assess IR in iNOS KO mice after 5 weeks of LFD feeding by monitoring body composition, energy homeostasis, insulin sensitivity/signaling, nitrite content and gene expressions changes in the tissues. We found that body weight and fat content in KO mice were significantly higher while the respiratory exchange ratio (RER), volume of carbon dioxide (VCO 2 ), and heat production were lower as compared to WT mice. Furthermore, altered systemic glucose tolerance, tissue insulin signaling, hepatic gluconeogenesis, augmented hepatic lipids, adiposity, as well as gene expression regulating lipid synthesis, catabolism and efflux were evident in iNOS KO mice. Significant reduction in eNOS and nNOS gene expression, hepatic and adipose tissue nitrite content, circulatory nitrite was also observed. Oxygen consumption rate of mitochondrial respiration has remained unaltered in KO mice as measured using extracellular flux analyzer. Our findings establish a link between the NO status with systemic and tissue specific IR in iNOS KO mice at 5 weeks.
Biological and mechanical measures for runoff and soil erosion control in India and beyond
Soil erosion poses a significant threat to agricultural sustainability, particularly in India, where approximately 83.0 million hectares of land are affected, with an average soil loss of 16.23 t ha−1 annually. This review systematically analyzes control practices for mitigating soil erosion in agricultural lands, focusing on their effectiveness in reducing runoff and soil loss. The findings highlight that biological methods, such as mulching and intercropping, are widely adopted, with mulching reducing soil loss and runoff by 5–18% and 3–15%, respectively. Tillage operations, particularly conservation tillage, have shown promise, reducing soil loss by 14–18% and improving infiltration rates. Mechanical methods, including contour bunds and terracing, further complement these efforts, achieving reductions in soil loss by 44–52% and runoff by 36–46%. The review underscores the importance of integrating biological and mechanical approaches for optimal erosion control, as well as the need for policy support and farmer education to promote widespread adoption. By addressing soil erosion through these practices, agricultural productivity, soil fertility, and environmental health can be significantly enhanced, contributing to global food security and sustainable land management goals.Article HighlightsMulching, intercropping & no-till farming cut soil loss – proven methods to protect farmland sustainably.Mix plants + structures for best results – combined approaches boost long-term soil protection.Farmers + policies must team up – scaling these practices ensures food security for the future.
Discovery of pancreastatin inhibitor PSTi8 for the treatment of insulin resistance and diabetes: studies in rodent models of diabetes mellitus
Pancreastatin (PST) is an endogenous peptide which regulates glucose and lipid metabolism in liver and adipose tissues. In type 2 diabetic patients, PST level is high and plays a crucial role in the negative regulation of insulin sensitivity. Novel therapeutic agents are needed to treat the diabetes and insulin resistance (IR) against the PST action. In this regard, we have investigated the PST inhibitor peptide-8 (PSTi8) action against diabetogenic PST. PSTi8 rescued PST-induced IR in HepG2 and 3T3L1 cells. PSTi8 increases the GLUT4 translocation to cell surface to promote glucose uptake in L6-GLUT4 myc cells. PSTi8 treatment showed an increase in insulin sensitivity in db/db, high fat and fructose fed streptozotocin (STZ) induced IR mice. PSTi8 improved the glucose homeostasis which is comparable to metformin in diabetic mice, characterized by elevated glucose clearance, enhanced glycogenesis, enhanced glycolysis and reduced gluconeogenesis. PST and PSTi8 both were docked to the GRP78 inhibitor binding site in protein-protein docking, GRP78 expression and its ATPase activity studies. The mechanism of action of PSTi8 may be mediated by activating IRS1/2-phosphatidylinositol-3-kinase-AKT (FoxO1, Srebp-1c) signaling pathway. The discovery of PSTi8 provides a promising therapeutic agent for the treatment of metabolic diseases mainly diabetes.
A Novel Method to Dynamically Fix Threshold for Node Neighbourhood Based Link Prediction Techniques
The objective of an online social network is to amplify the stream of information among the users. This goal can be accomplished by maximizing interconnectivity among users using link prediction techniques. Existing link prediction techniques uses varied heuristics such as similarity score to predict possible connections. Link prediction can be considered a binary classification problem where probable class outcomes are presence and absence of connections. One of the challenges in classification is to decide threshold value. Since the social network is exceptionally dynamic in nature and each user possess different features, it is difficult to choose a static, common threshold which decides whether two non-connected users will form interconnectivity. This article proposes a novel technique, FIXT, that dynamically decides the threshold value for predicting the possibility of new link formation. The article evaluates the performance of FIXT with six baseline techniques. The comparative results depict that FIXT achieves accuracy up to 93% and outperforms baseline techniques.