Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,549 result(s) for "Gupta, Manish"
Sort by:
Endophytic Fungi: A Source of Potential Antifungal Compounds
The emerging and reemerging forms of fungal infections encountered in the course of allogeneic bone marrow transplantations, cancer therapy, and organ transplants have necessitated the discovery of antifungal compounds with enhanced efficacy and better compatibility. A very limited number of antifungal compounds are in practice against the various forms of topical and systemic fungal infections. The trends of new antifungals being introduced into the market have remained insignificant while resistance towards the introduced drug has apparently increased, specifically in patients undergoing long-term treatment. Considering the immense potential of natural microbial products for the isolation and screening of novel antibiotics for different pharmaceutical applications as an alternative source has remained largely unexplored. Endophytes are one such microbial community that resides inside all plants without showing any symptoms with the promise of producing diverse bioactive molecules and novel metabolites which have application in medicine, agriculture, and industrial set ups. This review substantially covers the antifungal compounds, including volatile organic compounds, isolated from fungal endophytes of medicinal plants during 2013–2018. Some of the methods for the activation of silent biosynthetic genes are also covered. As such, the compounds described here possess diverse configurations which can be a step towards the development of new antifungal agents directly or precursor molecules after the required modification.
Technical Job Recommendation System Using APIs and Web Crawling
There has been a sudden boom in the technical industry and an increase in the number of good startups. Keeping track of various appropriate job openings in top industry names has become increasingly troublesome. This leads to deadlines and hence important opportunities being missed. Through this research paper, the aim is to automate this process to eliminate this problem. To achieve this, Puppeteer and Representational State Transfer (REST) APIs for web crawling have been used. A hybrid system of Content-Based Filtering and Collaborative Filtering is implemented to recommend these jobs. The intention is to aggregate and recommend appropriate jobs to job seekers, especially in the engineering domain. The entire process of accessing numerous company websites hoping to find a relevant job opening listed on their career portals is simplified. The proposed recommendation system is tested on an array of test cases with a fully functioning user interface in the form of a web application. It has shown satisfactory results, outperforming the existing systems. It thus testifies to the agenda of quality over quantity.
Post-term Birth and Developmental Coordination Disorder: A Narrative Review of Motor Impairments in Children
A prevalent long-term medical condition in children that is rarely understood and acknowledged in educational contexts is developmental coordination disorder (DCD), which is one of the most prevalent conditions in school-aged children. Mild-to-severe abnormalities in muscle tone, posture, movement, and the learning of motor skills are associated with motor disorders. Early detection of developmental abnormalities in children is crucial as delayed motor milestones during infancy might indicate a delay in both physical and neurological development. To overcome the current condition of motor impairment, obstructing their risk factors is important to prevent the development of disability, which is already determined in the prenatal and perinatal period. Concerning the relationship with gestational age, the majority of the studies reported a relationship between DCD and preterm children. However, the entire range of gestational age, including post-term birth, has not been studied. The risk of developmental consequences such as cognitive impairments, major mental diseases, attention-deficit/hyperactivity disorder, autism spectrum disorder, and other behavioral and emotional problems increases in post-term birth, according to prior studies. Thus, this review aims to provide an overview of information linking post-term birth to children's motor impairment, with a focus on DCD. A thorough systemic review was conducted on online databases, and only a few studies were found on the association with post-term children. Insufficient evidence made it necessary to examine more post-term cohorts in adolescence to fully determine the long-term health concerns and develop therapies to mitigate the detrimental effects of post-term deliveries.
Blockchain- Based Secure and Efficient Scheme for Medical Data
Internet of Things (IoT) fog nodes are distributed near end-user devices to mitigate the impacts of low delay, position awareness, and spatial spread, which aren't permitted by numerous IoT apps. Fog computing (FC) also speeds up reaction times by decreasing the quantity of data sent to the cloud. Despite these advantages, FC still has a lot of work to do to fulfill security and privacy standards. The constraints of the FC resources are the cause of these difficulties. In reality, FC could raise fresh concerns about privacy and security. Although the Fog security and privacy problems have been covered in several articles recently, most of these studies just touched the surface of these difficulties. This paper provides a unique solution for the authentication of data by using hyperledger fabric. The fog layer store data transferred by the IoT layer and calculate the hash value. These hash values are now stored in hyperledger fabric for authentication purposes. The proposed model results compared with lewako’s and Fan’s scheme and found that the proposed model has 25.00 % less encryption time, 09.3 % less decryption time, 17.48 % less storage overhead, and 23.38 % less computation cost as compared to Fan’s scheme.
Circulating microRNA‐590‐5p functions as a liquid biopsy marker in non‐small cell lung cancer
Despite the availability of various diagnostic procedures, a tissue biopsy is still indispensable for the routine diagnosis of lung cancer. However, inaccurate diagnoses can occur, leading to inefficient cancer management. In this context, use of circulating microRNAs (miRNAs) may serve as diagnostic tools as liquid biopsies, and as biomarkers to better understand the molecular mechanisms involved in the progression of cancer. We identified miR‐590‐5p as a potential prognostic marker in the progression of non‐small cell lung cancer (NSCLC). We were able to detect this miRNA in blood plasma samples of NSCLC patients through quantitative real‐time PCR. Our data showed an ~7.5‐fold downregulation of miR‐590‐5p in NSCLC patients compared to healthy controls, which correlated with several clinicopathological features. Further, overexpression of miR‐590‐5p led to decreased cell viability, proliferation, colony formation, migration, and invasion potential of lung cancer cells, whereas its knockdown showed the opposite effect. In addition, the levels of several proteins involved in the epithelial‐to‐mesenchymal transition negatively correlated with miR‐590‐5p levels in lung adenocarcinoma cells and tumors of NSCLC patients. Further, dual‐luciferase reporter assays identified STAT3 as a direct target of miR‐590‐5p, which negatively regulated STAT3 activation and its downstream signaling molecules (eg, Cyclin D1, c‐Myc, Vimentin, and β‐catenin) involved in tumorigenesis. Taken together, our study suggests that miR‐590‐5p functions as a tumor suppressor in NSCLC through regulating the STAT3 pathway, and may serve as a useful biomarker for the diagnosis/prognosis of NSCLC, and as a potential therapeutic target for the treatment of NSCLC. This study shows that circulating miR‐590‐5p functions as a tumor suppressor in NSCLC. In the future, it may be used as a potential liquid biopsy biomarker for the diagnosis/prognosis of NSCLC.
Trimethyl Chitosan Nanoparticles Encapsulated Protective Antigen Protects the Mice Against Anthrax
Anthrax is an era old deadly disease against which there are only two currently available licensed vaccines named anthrax vaccine adsorbed and precipitated (AVP). Though they can provide a protective immunity, their multiple side-effects owing to their ill-defined composition and presence of toxic proteins (LF and EF) of , the causative organism of anthrax, in the vaccine formulation makes their widespread use objectionable. Hence, an anthrax vaccine that contains well-defined and controlled components would be highly desirable. In this context, we have evaluated the potential of various vaccine formulations comprising of protective antigen (PA) encapsulated trimethyl-chitosan nanoparticles (TMC-PA) in conjunction with either CpG-C ODN 2395 (CpG) or Poly I:C. Each formulation was administered three different routes, viz., subcutaneous (SC), intramuscular (IM), and intraperitoneal in female BALB/c mice. Irrespective of the route of immunization, CpG or Poly I:C adjuvanted TMC-PA nanoparticles induced a significantly higher humoral response (total serum IgG and its isotypes viz., IgG1, IgG2a, and IgG2b), compared to their CpG or Poly I:C PA counterparts. This clearly demonstrates the synergistic behavior of CpG and Poly I:C with TMC nanoparticles. The adjuvant potential of TMC nanoparticles could be observed in all the three routes as the TMC-PA nanoparticles by themselves induced IgG titers (1-1.5 × 10 ) significantly higher than both CpG PA and Poly I:C PA groups (2-8 × 10 ). The effect of formulations on T-helper (T ) cell development was assessed by quantifying the Th1-dependant (TNF-α, IFN-γ, and IL-2), Th2-dependant (IL-4, IL-6, and IL-10), and Th17-type (IL-17A) cytokines. Adjuvanation with CpG and Poly I:C, the TMC-PA nanoparticles triggered a Th1 skewed immune response, as suggested by an increase in the levels of total IgG2a along with IFN-γ cytokine production. Interestingly, the TMC-PA group showed a Th2-biased immune response. Upon challenge with the Ames strain, CpG and Poly I:C adjuvanted TMC-PA nanoparticles immunized the SC and IM routes showed the highest protective efficacy of ~83%. Altogether, the results suggest that CpG or Poly I:C adjuvanted, PA-loaded TMC nanoparticles could be used as an effective, non-toxic, second generation subunit-vaccine candidate against anthrax.
HIV Protein Nef Induces Cardiomyopathy Through Induction of Bcl2 and p21
HIV-associated cardiovascular diseases remain a leading cause of death in people living with HIV/AIDS (PLWHA). Although antiretroviral drugs suppress the viral load, they fail to remove the virus entirely. HIV-1 Nef protein is known to play a role in viral virulence and HIV latency. Expression of Nef protein can be detected in different organs, including cardiac tissue. Despite the established role of Nef protein in HIV-1 replication, its impact on organ function inside the human body is not clear. To understand the effect of Nef at the organ level, we created a new Nef-transgenic (Nef-TG) mouse that expresses Nef protein in the heart. Our study found that Nef expression caused inhibition of cardiac function and pathological changes in the heart with increased fibrosis, leading to heart failure and early mortality. Further, we found that cellular autophagy is significantly inhibited in the cardiac tissue of Nef-TG mice. Mechanistically, we found that Nef protein causes the accumulation of Bcl2 and Beclin-1 proteins in the tissue, which may affect the cellular autophagy system. Additionally, we found Nef expression causes upregulation of the cellular senescence marker p21 and senescence-associated β-galactosidase expression. Our findings suggest that the Nef-mediated inhibition of autophagy and induction of senescence markers may promote aging in PLWHA. Our mouse model could help us to understand the effect of Nef protein on organ function during latent HIV infection.
The Art of Designing DNA Nanostructures with CAD Software
Since the arrival of DNA nanotechnology nearly 40 years ago, the field has progressed from its beginnings of envisioning rather simple DNA structures having a branched, multi-strand architecture into creating beautifully complex structures comprising hundreds or even thousands of unique strands, with the possibility to exactly control the positions down to the molecular level. While the earliest construction methodologies, such as simple Holliday junctions or tiles, could reasonably be designed on pen and paper in a short amount of time, the advent of complex techniques, such as DNA origami or DNA bricks, require software to reduce the time required and propensity for human error within the design process. Where available, readily accessible design software catalyzes our ability to bring techniques to researchers in diverse fields and it has helped to speed the penetration of methods, such as DNA origami, into a wide range of applications from biomedicine to photonics. Here, we review the historical and current state of CAD software to enable a variety of methods that are fundamental to using structural DNA technology. Beginning with the first tools for predicting sequence-based secondary structure of nucleotides, we trace the development and significance of different software packages to the current state-of-the-art, with a particular focus on programs that are open source.
Arresting dissolution by interfacial rheology design
A strategy to halt dissolution of particle-coated air bubbles in water based on interfacial rheology design is presented. Whereas previously a dense monolayer was believed to be required for such an “armored bubble” to resist dissolution, in fact engineering a 2D yield stress interface suffices to achieve such performance at submonolayer particle coverages. We use a suite of interfacial rheology techniques to characterize spherical and ellipsoidal particles at an air–water interface as a function of surface coverage. Bubbles with varying particle coverages are made and their resistance to dissolution evaluated using a microfluidic technique. Whereas a bare bubble only has a single pressure at which a given radius is stable, we find a range of pressures over which bubble dissolution is arrested for armored bubbles. The link between interfacial rheology and macroscopic dissolution of ∼100 μm bubbles coated with ∼1 μm particles is presented and discussed. The generic design rationale is confirmed by using nonspherical particles, which develop significant yield stress at even lower surface coverages. Hence, it can be applied to successfully inhibit Ostwald ripening in a multitude of foam and emulsion applications.
The yin–yang codec for archival DNA storage
A robust and reliable codec is the backbone for any digital DNA storage. A recent work introduces a codec based on ancient Chinese philosophy, yin–yang, that outperforms other codecs in terms of reliability and physical information density.