Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
388 result(s) for "Gusev, Alexander"
Sort by:
Secure large-scale genome-wide association studies using homomorphic encryption
Genome-wide association studies (GWASs) seek to identify genetic variants associated with a trait, and have been a powerful approach for understanding complex diseases. A critical challenge for GWASs has been the dependence on individual-level data that typically have strict privacy requirements, creating an urgent need for methods that preserve the individual-level privacy of participants. Here, we present a privacy-preserving framework based on several advances in homomorphic encryption and demonstrate that it can perform an accurate GWAS analysis for a real dataset of more than 25,000 individuals, keeping all individual data encrypted and requiring no user interactions. Our extrapolations show that it can evaluate GWASs of 100,000 individuals and 500,000 single-nucleotide polymorphisms (SNPs) in 5.6 h on a single server node (or in 11 min on 31 server nodes running in parallel). Our performance results are more than one order of magnitude faster than prior state-of-the-art results using secure multiparty computation, which requires continuous user interactions, with the accuracy of both solutions being similar. Our homomorphic encryption advances can also be applied to other domains where large-scale statistical analyses over encrypted data are needed.
Probabilistic fine-mapping of transcriptome-wide association studies
Transcriptome-wide association studies using predicted expression have identified thousands of genes whose locally regulated expression is associated with complex traits and diseases. In this work, we show that linkage disequilibrium induces significant gene–trait associations at non-causal genes as a function of the expression quantitative trait loci weights used in expression prediction. We introduce a probabilistic framework that models correlation among transcriptome-wide association study signals to assign a probability for every gene in the risk region to explain the observed association signal. Importantly, our approach remains accurate when expression data for causal genes are not available in the causal tissue by leveraging expression prediction from other tissues. Our approach yields credible sets of genes containing the causal gene at a nominal confidence level (for example, 90%) that can be used to prioritize genes for functional assays. We illustrate our approach by using an integrative analysis of lipid traits, where our approach prioritizes genes with strong evidence for causality. FOCUS (fine-mapping of causal gene sets) models correlation among TWAS signals to assign a probability for every gene in the risk region to explain the observed association signal while controlling for pleiotropic SNP effects and unmeasured causal expression.
Synthesis, Toxicity Assessment, Environmental and Biomedical Applications of MXenes: A Review
MXenes are a family of two-dimensional (2D) composite materials based on transition metal carbides, nitrides and carbonitrides that have been attracting attention since 2011. Combination of electrical and mechanical properties with hydrophilicity makes them promising materials for biomedical applications. This review briefly discusses methods for the synthesis of MXenes, their potential applications in medicine, ranging from sensors and antibacterial agents to targeted drug delivery, cancer photo/chemotherapy, tissue engineering, bioimaging, and environmental applications such as sensors and adsorbents. We focus on in vitro and in vivo toxicity and possible mechanisms. We discuss the toxicity analogies of MXenes and other 2D materials such as graphene, mentioning the greater biocompatibility of MXenes. We identify existing barriers that hinder the formation of objective knowledge about the toxicity of MXenes. The most important of these barriers are the differences in the methods of synthesis of MXenes, their composition and structure, including the level of oxidation, the number of layers and flake size; functionalization, test concentrations, duration of exposure, and individual characteristics of biological test objects Finally, we discuss key areas for further research that need to involve new methods of nanotoxicology, including predictive computational methods. Such studies will bring closer the prospect of widespread industrial production and safe use of MXene-based products.
Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies
Transcriptome-wide association studies (TWAS) test the association between traits and genetically predicted gene expression levels. The power of a TWAS depends in part on the strength of the correlation between a genetic predictor of gene expression and the causally relevant gene expression values. Consequently, TWAS power can be low when expression quantitative trait locus (eQTL) data used to train the genetic predictors have small sample sizes, or when data from causally relevant tissues are not available. Here, we propose to address these issues by integrating multiple tissues in the TWAS using sparse canonical correlation analysis (sCCA). We show that sCCA-TWAS combined with single-tissue TWAS using an aggregate Cauchy association test (ACAT) outperforms traditional single-tissue TWAS. In empirically motivated simulations, the sCCA+ACAT approach yielded the highest power to detect a gene associated with phenotype, even when expression in the causal tissue was not directly measured, while controlling the Type I error when there is no association between gene expression and phenotype. For example, when gene expression explains 2% of the variability in outcome, and the GWAS sample size is 20,000, the average power difference between the ACAT combined test of sCCA features and single-tissue, versus single-tissue combined with Generalized Berk-Jones (GBJ) method, single-tissue combined with S-MultiXcan, UTMOST, or summarizing cross-tissue expression patterns using Principal Component Analysis (PCA) approaches was 5%, 8%, 5% and 38%, respectively. The gain in power is likely due to sCCA cross-tissue features being more likely to be detectably heritable. When applied to publicly available summary statistics from 10 complex traits, the sCCA+ACAT test was able to increase the number of testable genes and identify on average an additional 400 additional gene-trait associations that single-trait TWAS missed. Our results suggest that aggregating eQTL data across multiple tissues using sCCA can improve the sensitivity of TWAS while controlling for the false positive rate.
Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights
Genome-wide association studies (GWAS) have identified over 100 risk loci for schizophrenia, but the causal mechanisms remain largely unknown. We performed a transcriptome-wide association study (TWAS) integrating a schizophrenia GWAS of 79,845 individuals from the Psychiatric Genomics Consortium with expression data from brain, blood, and adipose tissues across 3,693 primarily control individuals. We identified 157 TWAS-significant genes, of which 35 did not overlap a known GWAS locus. Of these 157 genes, 42 were associated with specific chromatin features measured in independent samples, thus highlighting potential regulatory targets for follow-up. Suppression of one identified susceptibility gene, mapk3 , in zebrafish showed a significant effect on neurodevelopmental phenotypes. Expression and splicing from the brain captured most of the TWAS effect across all genes. This large-scale connection of associations to target genes, tissues, and regulatory features is an essential step in moving toward a mechanistic understanding of GWAS. A transcriptome-wide association study integrating genome-wide association data with expression data from brain, blood and adipose tissues identifies new candidate susceptibility genes for schizophrenia, providing a step toward understanding the underlying biology.
Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types
We introduce an approach to identify disease-relevant tissues and cell types by analyzing gene expression data together with genome-wide association study (GWAS) summary statistics. Our approach uses stratified linkage disequilibrium (LD) score regression to test whether disease heritability is enriched in regions surrounding genes with the highest specific expression in a given tissue. We applied our approach to gene expression data from several sources together with GWAS summary statistics for 48 diseases and traits (average N  = 169,331) and found significant tissue-specific enrichments (false discovery rate (FDR) < 5%) for 34 traits. In our analysis of multiple tissues, we detected a broad range of enrichments that recapitulated known biology. In our brain-specific analysis, significant enrichments included an enrichment of inhibitory over excitatory neurons for bipolar disorder, and excitatory over inhibitory neurons for schizophrenia and body mass index. Our results demonstrate that our polygenic approach is a powerful way to leverage gene expression data for interpreting GWAS signals. A new method tests whether disease heritability is enriched near genes with high tissue-specific expression. The authors use gene expression data together with GWAS summary statistics for 48 diseases and traits to identify disease-relevant tissues.
Partitioning heritability by functional annotation using genome-wide association summary statistics
Hilary Finucane, Brendan Bulik-Sullivan, Benjamin Neale, Alkes Price and colleagues introduce a new method, called stratified LD score regression, for partitioning heritability by functional category using genome-wide association study summary statistics. They observe a substantial enrichment of heritability in conserved regions and illustrate how this approach can provide insights into the biological basis of disease and direction for functional follow-up. Recent work has demonstrated that some functional categories of the genome contribute disproportionately to the heritability of complex diseases. Here we analyze a broad set of functional elements, including cell type–specific elements, to estimate their polygenic contributions to heritability in genome-wide association studies (GWAS) of 17 complex diseases and traits with an average sample size of 73,599. To enable this analysis, we introduce a new method, stratified LD score regression, for partitioning heritability from GWAS summary statistics while accounting for linked markers. This new method is computationally tractable at very large sample sizes and leverages genome-wide information. Our findings include a large enrichment of heritability in conserved regions across many traits, a very large immunological disease–specific enrichment of heritability in FANTOM5 enhancers and many cell type–specific enrichments, including significant enrichment of central nervous system cell types in the heritability of body mass index, age at menarche, educational attainment and smoking behavior.
The Relationship Between Astronomical and Developmental Times Emerging in Modeling the Evolution of Agents
The simplest evolutionary model for catching prey by an agent (predator) is considered. The simulation is performed on the basis of a software-emulated Intel i8080 processor. Maximizing the number of catches is chosen as the objective function. This function is associated with energy dissipation and developmental time. It is shown that during Darwinian evolution, agents with an initially a random set of processor commands subsequently acquire a successful catching skill. It is found that in the process of evolution, a logarithmic relationship between astronomical and developmental times arises in agents. This result is important for the ideas available in the literature about the close connection of such concepts as time, Darwinian selection, and the maximization of entropy production.
Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis
Po-Ru Loh, Alkes Price and colleagues developed a fast algorithm for multicomponent, multi-trait variance-components analysis and use it to analyze the genetic architectures of schizophrenia and nine complex diseases from the PGC and GERA cohorts. Their analyses support a largely polygenic architecture for schizophrenia and significant genetic correlations for several pairs of GERA diseases. Heritability analyses of genome-wide association study (GWAS) cohorts have yielded important insights into complex disease architecture, and increasing sample sizes hold the promise of further discoveries. Here we analyze the genetic architectures of schizophrenia in 49,806 samples from the PGC and nine complex diseases in 54,734 samples from the GERA cohort. For schizophrenia, we infer an overwhelmingly polygenic disease architecture in which ≥71% of 1-Mb genomic regions harbor ≥1 variant influencing schizophrenia risk. We also observe significant enrichment of heritability in GC-rich regions and in higher-frequency SNPs for both schizophrenia and GERA diseases. In bivariate analyses, we observe significant genetic correlations (ranging from 0.18 to 0.85) for several pairs of GERA diseases; genetic correlations were on average 1.3 tunes stronger than the correlations of overall disease liabilities. To accomplish these analyses, we developed a fast algorithm for multicomponent, multi-trait variance-components analysis that overcomes prior computational barriers that made such analyses intractable at this scale.
DeCAF: a novel method to identify cell-type specific regulatory variants and their role in cancer risk
Here, we propose DeCAF (DEconvoluted cell type Allele specific Function), a new method to identify cell-fraction (cf) QTLs in tumors by leveraging both allelic and total expression information. Applying DeCAF to RNA-seq data from TCGA, we identify 3664 genes with cfQTLs (at 10% FDR) in 14 cell types, a 5.63× increase in discovery over conventional interaction-eQTL mapping. cfQTLs replicated in external cell-type-specific eQTL data are more enriched for cancer risk than conventional eQTLs. Our new method, DeCAF, empowers the discovery of biologically meaningful cfQTLs from bulk RNA-seq data in moderately sized studies.