Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
89 result(s) for "Guttridge, Denis C."
Sort by:
STAT3 Activation in Skeletal Muscle Links Muscle Wasting and the Acute Phase Response in Cancer Cachexia
Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26)-carcinoma cachexia. Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer. These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and translated in muscle such that amino acids liberated by increased proteolysis in cachexia are synthesized into acute phase proteins and exported into the blood.
The RNA demethylase FTO is required for maintenance of bone mass and functions to protect osteoblasts from genotoxic damage
The fat mass and obesity-associated gene (FTO) encodes an m6A RNA demethylase that controls mRNA processing and has been linked to both obesity and bone mineral density in humans by genome-wide association studies. To examine the role of FTO in bone, we characterized the phenotype of mice lacking Fto globally (FtoKO ) or selectively in osteoblasts (FtoOc KO ). Both mouse models developed age-related reductions in bone volume in both the trabecular and cortical compartments. RNA profiling in osteoblasts following acute disruption of Fto revealed changes in transcripts of Hspa1a and other genes in the DNA repair pathway containing consensus m6A motifs required for demethylation by Fto. Fto KO osteoblasts were more susceptible to genotoxic agents (UV and H₂O₂) and exhibited increased rates of apoptosis. Importantly, forced expression of Hspa1a or inhibition of NF-κB signaling normalized the DNA damage and apoptotic rates in Fto KO osteoblasts. Furthermore, increased metabolic stress induced in mice by feeding a high-fat diet induced greater DNA damage in osteoblast of FtoOc KO mice compared to controls. These data suggest that FTO functions intrinsically in osteoblasts through Hspa1a–NF-κB signaling to enhance the stability of mRNA of proteins that function to protect cells from genotoxic damage.
Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression and, in cancers, are often packaged within secreted microvesicles. The cachexia syndrome is a debilitating state of cancer that predominantly results from the loss of skeletal muscle mass, which is in part associated with apoptosis. How tumors promote apoptosis in distally located skeletal muscles has not been explored. Using both tumor cell lines and patient samples, we show that tumor-derived microvesicles induce apoptosis of skeletal muscle cells. This proapoptotic activity is mediated by a microRNA cargo, miR-21, which signals through the Toll-like 7 receptor (TLR7) on murine myoblasts to promote cell death. Furthermore, tumor microvesicles and miR-21 require c-Jun N-terminal kinase activity to regulate this apoptotic response. Together, these results describe a unique pathway by which tumor cells promote muscle loss, which might provide a great insight into elucidating the causes and treatment options of cancer cachexia.
Inflammation Based Regulation of Cancer Cachexia
Cancer cachexia, consisting of significant skeletal muscle wasting independent of nutritional intake, is a major concern for patients with solid tumors that affects surgical, therapeutic, and quality of life outcomes. This review summarizes the clinical implications, background of inflammatory cytokines, and the origin and sources of procachectic factors including TNF-α, IL-6, IL-1, INF-γ, and PIF. Molecular mechanisms and pathways are described to elucidate the link between the immune response caused by the presence of the tumor and the final result of skeletal muscle wasting.
The Sphingosine-1-Phosphate Lyase (LegS2) Contributes to the Restriction of Legionella pneumophila in Murine Macrophages
L. pneumophila is the causative agent of Legionnaires' disease, a human illness characterized by severe pneumonia. In contrast to those derived from humans, macrophages derived from most mouse strains restrict L. pneumophila replication. The restriction of L. pneumophila replication has been shown to require bacterial flagellin, a component of the type IV secretion system as well as the cytosolic NOD-like receptor (NLR) Nlrc4/ Ipaf. These events lead to caspase-1 activation which, in turn, activates caspase-7. Following caspase-7 activation, the phagosome-containing L. pneumophila fuses with the lysosome, resulting in the restriction of L. pneumophila growth. The LegS2 effector is injected by the type IV secretion system and functions as a sphingosine 1-phosphate lyase. It is homologous to the eukaryotic sphingosine lyase (SPL), an enzyme required in the terminal steps of sphingolipid metabolism. Herein, we show that mice Bone Marrow-Derived Macrophages (BMDMs) and human Monocyte-Derived Macrophages (hMDMs) are more permissive to L. pneumophila legS2 mutants than wild-type (WT) strains. This permissiveness to L. pneumophila legS2 is neither attributed to abolished caspase-1, caspase-7 or caspase-3 activation, nor due to the impairment of phagosome-lysosome fusion. Instead, an infection with the legS2 mutant resulted in the reduction of some inflammatory cytokines and their corresponding mRNA; this effect is mediated by the inhibition of the nuclear transcription factor kappa-B (NF-κB). Moreover, BMDMs infected with L. pneumophila legS2 mutant showed elongated mitochondria that resembles mitochondrial fusion. Therefore, the absence of LegS2 effector is associated with reduced NF-κB activation and atypical morphology of mitochondria.
Optimization of a mouse model of pancreatic cancer to simulate the human phenotypes of metastasis and cachexia
Background Pancreatic ductal adenocarcinoma (PDAC) presents with a high mortality rate. Two important features of PDAC contribute to this poor outcome. The first is metastasis which occurs in ~ 80% of PDAC patients. The second is cachexia, which compromises treatment tolerance for patients and reduces their quality of life. Although various mouse models of PDAC exist, recapitulating both metastatic and cachectic features have been challenging. Methods Here, we optimize an orthotopic mouse model of PDAC by altering several conditions, including the subcloning of parental murine PDAC cells, implantation site, number of transplanted cells, and age of recipient mice. We perform spatial profiling to compare primary and metastatic immune microenvironments and RNA sequencing to gain insight into the mechanisms of muscle wasting in PDAC-induced cachexia, comparing non-metastatic to metastatic conditions. Results These modifications extend the time course of the disease and concurrently increase the rate of metastasis to approximately 70%. Furthermore, reliable cachexia endpoints are achieved in both PDAC mice with and without metastases, which is reminiscent of patients. We also find that cachectic muscles from PDAC mice with metastasis exhibit a similar transcriptional profile to muscles derived from mice and patients without metastasis. Conclusion Together, this model is likely to be advantageous in both advancing our understanding of the mechanism of PDAC cachexia, as well as in the evaluation of novel therapeutics.
Blockade of interleukin-6 (IL-6) signaling in dedifferentiated liposarcoma (DDLPS) decreases mouse double minute 2 (MDM2) oncogenicity via alternative splicing
Effective therapies for retroperitoneal (RP) dedifferentiated liposarcoma (DDLPS) remain unavailable. Loco-regional recurrence occurs in >80% of cases; 5-year disease-specific survival is only 20%. DDLPS is especially prevalent in the retroperitoneum and abdomen; evaluation of the DDLPS microenvironment in these high-fat compartments appears pertinent. Adipose is a main supplier of interleukin-6 (IL6); excessive activation of IL6 signal transducer glycoprotein 130 (GP130) underlies the development of some diseases. The role of GP130 pathway activation remains unstudied in DDLPS, so we examined the role of microenvironment fat cell activation of the IL6/GP130 signaling cascade in DDLPS. All DDLPS tumors and cell lines studied expressed elevated levels of the GP130-encoding gene IL6ST and GP130 protein compared to normal tissue and cell line controls. IL6 increased DDLPS cell growth and migration, possibly through increased signal transducer and activator of transcription 1 (STAT1) and 3 (STAT3) activation, and upregulated mouse double minute 2 (MDM2). GP130 loss conveyed opposite effects; pharmacological blockade of GP130 by SC144 produced the MDM2 splice variant MDM2-ALT1, known to inhibit full length MDM2 (MDM2-FL). Although genomic MDM2 amplification is pathognomonic for DDLPS, mechanisms driving MDM2 expression, regulation, and function beyond the MDM2:p53 negative feedback loop are poorly understood. Our findings suggest a novel preadipocyte DDLPS-promoting role due to IL6 release, via upregulation of DDLPS MDM2 expression. Pharmacological GP130 blockade reduced the IL6-induced increase in DDLPS MDM2 mRNA and protein levels, possibly through enhanced expression of MDM2-ALT1, a possibly targetable pathway with potential as future DDLPS patient therapy.
Loss of miR-29 in Myoblasts Contributes to Dystrophic Muscle Pathogenesis
microRNAs (miRNAs) are noncoding RNAs that regulate gene expression in post-transcriptional fashion, and emerging studies support their importance in a multitude of physiological and pathological processes. Here, we describe the regulation and function of miR-29 in Duchenne muscular dystrophy (DMD) and its potential use as therapeutic target. Our results demonstrate that miR-29 expression is downregulated in dystrophic muscles of mdx mice, a model of DMD. Restoration of its expression by intramuscular and intravenous injection improved dystrophy pathology by both promoting regeneration and inhibiting fibrogenesis. Mechanistic studies revealed that loss of miR-29 in muscle precursor cells (myoblasts) promotes their transdifferentiation into myofibroblasts through targeting extracellular molecules including collagens and microfibrillar-associated protein 5 (Mfap5). We further demonstrated that miR-29 is under negative regulation by transforming growth factor-β (TGF-β) signaling. Together, these results not only identify TGF-β–miR-29 as a novel regulatory axis during myoblasts conversion into myofibroblasts which constitutes a novel contributing route to muscle fibrogenesis of DMD but also implicate miR-29 replacement therapy as a promising treatment approach for DMD.
The impact of inflammation and acute phase activation in cancer cachexia
The development of cachexia in the setting of cancer or other chronic diseases is a significant detriment for patients. Cachexia is associated with a decreased ability to tolerate therapies, reduction in ambulation, reduced quality of life, and increased mortality. Cachexia appears intricately linked to the activation of the acute phase response and is a drain on metabolic resources. Work has begun to focus on the important inflammatory factors associated with the acute phase response and their role in the immune activation of cachexia. Furthermore, data supporting the liver, lung, skeletal muscle, and tumor as all playing a role in activation of the acute phase are emerging. Although the acute phase is increasingly being recognized as being involved in cachexia, work in understanding underlying mechanisms of cachexia associated with the acute phase response remains an active area of investigation and still lack a holistic understanding and a clear causal link. Studies to date are largely correlative in nature, nonetheless suggesting the possibility for a role for various acute phase reactants. Herein, we examine the current literature regarding the acute phase response proteins, the evidence these proteins play in the promotion and exacerbation of cachexia, and current evidence of a therapeutic potential for patients.
TNF Inhibits Notch-1 in Skeletal Muscle Cells by Ezh2 and DNA Methylation Mediated Repression: Implications in Duchenne Muscular Dystrophy
Classical NF-kappaB signaling functions as a negative regulator of skeletal myogenesis through potentially multiple mechanisms. The inhibitory actions of TNFalpha on skeletal muscle differentiation are mediated in part through sustained NF-kappaB activity. In dystrophic muscles, NF-kappaB activity is compartmentalized to myofibers to inhibit regeneration by limiting the number of myogenic progenitor cells. This regulation coincides with elevated levels of muscle derived TNFalpha that is also under IKKbeta and NF-kappaB control. Based on these findings we speculated that in DMD, TNFalpha secreted from myotubes inhibits regeneration by directly acting on satellite cells. Analysis of several satellite cell regulators revealed that TNFalpha is capable of inhibiting Notch-1 in satellite cells and C2C12 myoblasts, which was also found to be dependent on NF-kappaB. Notch-1 inhibition occurred at the mRNA level suggesting a transcriptional repression mechanism. Unlike its classical mode of action, TNFalpha stimulated the recruitment of Ezh2 and Dnmt-3b to coordinate histone and DNA methylation, respectively. Dnmt-3b recruitment was dependent on Ezh2. We propose that in dystrophic muscles, elevated levels of TNFalpha and NF-kappaB inhibit the regenerative potential of satellite cells via epigenetic silencing of the Notch-1 gene.