Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
326 result(s) for "Győrffy, Balázs"
Sort by:
Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer
Progress in ovarian cancer treatment lags behind other tumor types. With diagnosis usually at an advanced stage, there is a high demand for reliable prognostic biomarkers capable of the selection of effective chemo- and targeted therapies. Our goal was to establish a large-scale transcriptomic database and use it to uncover and rank survival-associated genes. Ovarian cancer cohorts with transcriptome-level gene expression data and clinical follow-up were identified from public repositories. All samples were normalized and entered into an integrated database. Cox univariate survival analysis was performed for all genes and was followed by multivariate analysis for selected genes involving clinical and pathological variables. False discovery rate was computed for multiple hypothesis testing and a 1% cutoff was used to determine statistical significance. The complete integrated database comprises 1816 samples from 17 datasets. Altogether, 2468 genes were correlated to progression-free survival (PFS), and 704 genes were correlated with overall survival (OS). The most significant genes were WBP1L, ASAP3, CNNM2, and NCAPH2 for progression-free survival and CSE1L, NUAK1, ALPK2, and SHKBP1 for overall survival. Genes significant for PFS were also preferentially significant for predicting OS as well. All data including HR and p values as well as the used cutoff values for all genes for both PFS and OS are provided to enable the ranking of future biomarker candidates across all genes. Our results help to prioritize genes and to neglect those which are most likely to fail in studies aiming to establish new clinically useful biomarkers and therapeutic targets in serous ovarian cancer.
Pancancer survival analysis of cancer hallmark genes
Cancer hallmark genes are responsible for the most essential phenotypic characteristics of malignant transformation and progression. In this study, our aim was to estimate the prognostic effect of the established cancer hallmark genes in multiple distinct cancer types. RNA-seq HTSeq counts and survival data from 26 different tumor types were acquired from the TCGA repository. DESeq was used for normalization. Correlations between gene expression and survival were computed using the Cox proportional hazards regression and by plotting Kaplan–Meier survival plots. The false discovery rate was calculated to correct for multiple hypothesis testing. Signatures based on genes involved in genome instability and invasion reached significance in most individual cancer types. Thyroid and glioblastoma were independent of hallmark genes (61 and 54 genes significant, respectively), while renal clear cell cancer and low grade gliomas harbored the most prognostic changes (403 and 419 genes significant, respectively). The eight genes with the highest significance included BRCA1 (genome instability, HR 4.26, p < 1E−16), RUNX1 (sustaining proliferative signaling, HR 2.96, p = 3.1E−10) and SERPINE1 (inducing angiogenesis, HR 3.36, p = 1.5E−12) in low grade glioma, CDK1 (cell death resistance, HR = 5.67, p = 2.1E−10) in kidney papillary carcinoma, E2F1 (tumor suppressor, HR 0.38, p = 2.4E−05) and EREG (enabling replicative immortality, HR 3.23, p = 2.1E−07) in cervical cancer, FBP1 (deregulation of cellular energetics, HR 0.45, p = 2.8E−07) in kidney renal clear cell carcinoma and MYC (invasion and metastasis, HR 1.81, p = 5.8E−05) in bladder cancer. We observed unexpected heterogeneity and tissue specificity when correlating cancer hallmark genes and survival. These results will help to prioritize future targeted therapy development in different types of solid tumors.
Web-Based Survival Analysis Tool Tailored for Medical Research (KMplot): Development and Implementation
Background: Survival analysis is a cornerstone of medical research, enabling the assessment of clinical outcomes for disease progression and treatment efficiency. Despite its central importance, no commonly used spreadsheet software can handle survival analysis and there is no web server available for its computation. Objective: Here, we introduce a web-based tool capable of performing univariate and multivariate Cox proportional hazards survival analysis using data generated by genomic, transcriptomic, proteomic, or metabolomic studies. Methods: We implemented different methods to establish cut-off values for the trichotomization or dichotomization of continuous data. The false discovery rate is computed to correct for multiple hypothesis testing. A multivariate analysis option enables comparing omics data with clinical variables. Results: We established a registration-free web-based survival analysis tool capable of performing univariate and multivariate survival analysis using any custom-generated data. Conclusions: This tool fills a gap and will be an invaluable contribution to basic medical and clinical research.
TNMplot.com: A Web Tool for the Comparison of Gene Expression in Normal, Tumor and Metastatic Tissues
Genes showing higher expression in either tumor or metastatic tissues can help in better understanding tumor formation and can serve as biomarkers of progression or as potential therapy targets. Our goal was to establish an integrated database using available transcriptome-level datasets and to create a web platform which enables the mining of this database by comparing normal, tumor and metastatic data across all genes in real time. We utilized data generated by either gene arrays from the Gene Expression Omnibus of the National Center for Biotechnology Information (NCBI-GEO) or RNA-seq from The Cancer Genome Atlas (TCGA), Therapeutically Applicable Research to Generate Effective Treatments (TARGET), and The Genotype-Tissue Expression (GTEx) repositories. The altered expression within different platforms was analyzed separately. Statistical significance was computed using Mann–Whitney or Kruskal–Wallis tests. False Discovery Rate (FDR) was computed using the Benjamini–Hochberg method. The entire database contains 56,938 samples, including 33,520 samples from 3180 gene chip-based studies (453 metastatic, 29,376 tumorous and 3691 normal samples), 11,010 samples from TCGA (394 metastatic, 9886 tumorous and 730 normal), 1193 samples from TARGET (1 metastatic, 1180 tumorous and 12 normal) and 11,215 normal samples from GTEx. The most consistently upregulated genes across multiple tumor types were TOP2A (FC = 7.8), SPP1 (FC = 7.0) and CENPA (FC = 6.03), and the most consistently downregulated gene was ADH1B (FC = 0.15). Validation of differential expression using equally sized training and test sets confirmed the reliability of the database in breast, colon, and lung cancer at an FDR below 10%. The online analysis platform enables unrestricted mining of the database and is accessible at TNMplot.com.
Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets
Multiple studies suggested using different miRNAs as biomarkers for prognosis of hepatocellular carcinoma (HCC). We aimed to assemble a miRNA expression database from independent datasets to enable an independent validation of previously published prognostic biomarkers of HCC. A miRNA expression database was established by searching the TCGA (RNA-seq) and GEO (microarray) repositories to identify miRNA datasets with available expression and clinical data. A PubMed search was performed to identify prognostic miRNAs for HCC. We performed a uni- and multivariate Cox regression analysis to validate the prognostic significance of these miRNAs. The Limma R package was applied to compare the expression of miRNAs between tumor and normal tissues. We uncovered 214 publications containing 223 miRNAs identified as potential prognostic biomarkers for HCC. In the survival analysis, the expression levels of 55 and 84 miRNAs were significantly correlated with overall survival in RNA-seq and gene chip datasets, respectively. The most significant miRNAs were hsa-miR-149, hsa-miR-139, and hsa-miR-3677 in the RNA-seq and hsa-miR-146b-3p, hsa-miR-584, and hsa-miR-31 in the microarray dataset. Of the 223 miRNAs studied, the expression was significantly altered in 102 miRNAs in tumors compared to normal liver tissues. In summary, we set up an integrated miRNA expression database and validated prognostic miRNAs in HCC.
MultipleTesting.com: A tool for life science researchers for multiple hypothesis testing correction
Scientists from nearly all disciplines face the problem of simultaneously evaluating many hypotheses. Conducting multiple comparisons increases the likelihood that a non-negligible proportion of associations will be false positives, clouding real discoveries. Drawing valid conclusions require taking into account the number of performed statistical tests and adjusting the statistical confidence measures. Several strategies exist to overcome the problem of multiple hypothesis testing. We aim to summarize critical statistical concepts and widely used correction approaches while also draw attention to frequently misinterpreted notions of statistical inference. We provide a step-by-step description of each multiple-testing correction method with clear examples and present an easy-to-follow guide for selecting the most suitable correction technique. To facilitate multiple-testing corrections, we developed a fully automated solution not requiring programming skills or the use of a command line. Our registration free online tool is available at www.multipletesting.com and compiles the five most frequently used adjustment tools, including the Bonferroni, the Holm (step-down), the Hochberg (step-up) corrections, allows to calculate False Discovery Rates (FDR) and q-values. The current summary provides a much needed practical synthesis of basic statistical concepts regarding multiple hypothesis testing in a comprehensible language with well-illustrated examples. The web tool will fill the gap for life science researchers by providing a user-friendly substitute for command-line alternatives.
Online Survival Analysis Software to Assess the Prognostic Value of Biomarkers Using Transcriptomic Data in Non-Small-Cell Lung Cancer
In the last decade, optimized treatment for non-small cell lung cancer had lead to improved prognosis, but the overall survival is still very short. To further understand the molecular basis of the disease we have to identify biomarkers related to survival. Here we present the development of an online tool suitable for the real-time meta-analysis of published lung cancer microarray datasets to identify biomarkers related to survival. We searched the caBIG, GEO and TCGA repositories to identify samples with published gene expression data and survival information. Univariate and multivariate Cox regression analysis, Kaplan-Meier survival plot with hazard ratio and logrank P value are calculated and plotted in R. The complete analysis tool can be accessed online at: www.kmplot.com/lung. All together 1,715 samples of ten independent datasets were integrated into the system. As a demonstration, we used the tool to validate 21 previously published survival associated biomarkers. Of these, survival was best predicted by CDK1 (p<1E-16), CD24 (p<1E-16) and CADM1 (p = 7E-12) in adenocarcinomas and by CCNE1 (p = 2.3E-09) and VEGF (p = 3.3E-10) in all NSCLC patients. Additional genes significantly correlated to survival include RAD51, CDKN2A, OPN, EZH2, ANXA3, ADAM28 and ERCC1. In summary, we established an integrated database and an online tool capable of uni- and multivariate analysis for in silico validation of new biomarker candidates in non-small cell lung cancer.
Molecular stratifications, biomarker candidates and new therapeutic options in current medulloblastoma treatment approaches
Medulloblastoma (MB) is the most common malignant childhood tumor of the brain. Multimodal treatment consisting of surgery, radiation therapy, and chemotherapy reduced cumulative incidence of late mortality but increased the incidence of subsequent neoplasms and severe, incapacitating chronic health conditions. Present treatment strategies fail to recognize heterogeneity within patients despite wide divergence in individual responses. The persistent mortality rates and serious side effects of non-targeted cytotoxic therapies indicate a need for more refined therapeutic approaches. Advanced genomic research has led to the accumulation of an enormous amount of genetic information and resulted in a consensus distinguishing four molecular subgroups, WNT-activated, SHH-activated, and Group 3 and 4 medulloblastomas. These have distinct origin, demographics, molecular alterations, and clinical outcomes. Although subgroup affiliation does not predict response to therapy, new subgroup-specific markers of prognosis can enable a more layered risk stratification with additional subtypes within each primary subgroup. Here, we summarize subgroup-specific genetic alterations and their utility in current treatment strategies. The transition toward molecularly targeted interventions for newly diagnosed MBs remains slow, and prospective trials are needed to confirm stratifications based on molecular alterations. At the same time, numerous studies focus at fine-tuning the intensity of invasive radio- and chemotherapies to reduce intervention-related long-term morbidity. There are an increasing number of immunotherapy-based treatment strategies including immune checkpoint-inhibitors, oncolytic viruses, CAR-T therapy, and NK cells in recurrent and refractory MBs. Although most trials are in early phase, there is hope for therapeutic breakthroughs for advanced MBs within the next decade.
MetaAnalysisOnline.com: Web-Based Tool for the Rapid Meta-Analysis of Clinical and Epidemiological Studies
A meta-analysis is a quantitative, formal study design in epidemiology and clinical medicine that systematically integrates and quantitatively synthesizes findings from multiple independent studies. This approach not only enhances statistical power but also enables the exploration of effects across diverse populations and helps resolve controversies arising from conflicting studies. This study aims to develop and implement a user-friendly tool for conducting meta-analyses, addressing the need for an accessible platform that simplifies the complex statistical procedures required for evidence synthesis while maintaining methodological rigor. The platform available at MetaAnalysisOnline.com enables comprehensive meta-analyses through an intuitive web interface, requiring no programming expertise or command-line operations. The system accommodates diverse data types including binary (total and event numbers), continuous (mean and SD), and time-to-event data (hazard rates with CIs), while implementing both fixed-effect and random-effect models using established statistical approaches such as DerSimonian-Laird, Mantel-Haenszel, and inverse variance methods for effect size estimation and heterogeneity assessment. In addition to statistical tests, graphical representations including the forest plot, the funnel plot, and the z score plot can be drawn. A forest plot is highly effective in illustrating heterogeneity and pooled results. The risk of publication bias can be revealed by a funnel plot. A z score plot provides a visual assessment of whether more research is needed to establish a reliable conclusion. All the discussed models and visualization options are integrated into the registration-free web-based portal. Leveraging MetaAnalysisOnline.com's capabilities, we examined treatment-related adverse events in patients with cancer receiving perioperative anti-PD-1 immunotherapy through a systematic review encompassing 10 studies with 8099 total participants. Meta-analysis revealed that anti-PD-1 therapy doubled the risk of adverse events (risk ratio 2.15, 95% CI 1.39-3.32), with significant between-study heterogeneity (I =95%) and publication bias detected through the Egger test (P=.02). While these findings suggest increased toxicity associated with anti-PD-1 treatment, the z score analysis indicated that additional studies are needed for definitive conclusions. In summary, the web-based tool aims to bridge the void for clinical and life science researchers by offering a user-friendly alternative for the swift and reproducible meta-analysis of clinical and epidemiological trials.
Survival analysis in breast cancer using proteomic data from four independent datasets
Breast cancer clinical treatment selection is based on the immunohistochemical determination of four protein biomarkers: ESR1, PGR, HER2, and MKI67. Our aim was to correlate immunohistochemical results to proteome-level technologies in measuring the expression of these markers. We also aimed to integrate available proteome-level breast cancer datasets to identify and validate new prognostic biomarker candidates. We searched studies involving breast cancer patient cohorts with published survival and proteomic information. Immunohistochemistry and proteomic technologies were compared using the Mann–Whitney test. Receiver operating characteristics (ROC) curves were generated to validate discriminative power. Cox regression and Kaplan–Meier survival analysis were calculated to assess prognostic power. False Discovery Rate was computed to correct for multiple hypothesis testing. We established a database integrating protein expression data and survival information from four independent cohorts for 1229 breast cancer patients. In all four studies combined, a total of 7342 unique proteins were identified, and 1417 of these were identified in at least three datasets. ESR1, PGR, and HER2 protein expression levels determined by RPPA or LC–MS/MS methods showed a significant correlation with the levels determined by immunohistochemistry ( p  < 0.0001). PGR and ESR1 levels showed a moderate correlation (correlation coefficient = 0.17, p  = 0.0399). An additional panel of candidate proteins, including apoptosis-related proteins (BCL2,), adhesion markers (CDH1, CLDN3, CLDN7) and basal markers (cytokeratins), were validated as prognostic biomarkers. Finally, we expanded our previously established web tool designed to validate survival-associated biomarkers by including the proteomic datasets analyzed in this study ( https://kmplot.com/ ). In summary, large proteomic studies now provide sufficient data enabling the validation and ranking of potential protein biomarkers.