Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
20 result(s) for "Hübers, Annemarie"
Sort by:
FUS-mediated regulation of acetylcholine receptor transcription at neuromuscular junctions is compromised in amyotrophic lateral sclerosis
Neuromuscular junction (NMJ) disruption is an early pathogenic event in amyotrophic lateral sclerosis (ALS). Yet, direct links between NMJ pathways and ALS-associated genes such as FUS, whose heterozygous mutations cause aggressive forms of ALS, remain elusive. In a knock-in Fus-ALS mouse model, we identified postsynaptic NMJ defects in newborn homozygous mutants that were attributable to mutant FUS toxicity in skeletal muscle. Adult heterozygous knock-in mice displayed smaller neuromuscular endplates that denervated before motor neuron loss, which is consistent with ‘dying-back’ neuronopathy. FUS was enriched in subsynaptic myonuclei, and this innervation-dependent enrichment was distorted in FUS-ALS. Mechanistically, FUS collaborates with the ETS transcription factor ERM to stimulate transcription of acetylcholine receptor genes. Co-cultures of induced pluripotent stem cell-derived motor neurons and myotubes from patients with FUS-ALS revealed endplate maturation defects due to intrinsic FUS toxicity in both motor neurons and myotubes. Thus, FUS regulates acetylcholine receptor gene expression in subsynaptic myonuclei, and muscle-intrinsic toxicity of ALS mutant FUS may contribute to dying-back motor neuronopathy.
Comprehensive analysis of the mutation spectrum in 301 German ALS families
ObjectivesRecent advances in amyotrophic lateral sclerosis (ALS) genetics have revealed that mutations in any of more than 25 genes can cause ALS, mostly as an autosomal-dominant Mendelian trait. Detailed knowledge about the genetic architecture of ALS in a specific population will be important for genetic counselling but also for genotype-specific therapeutic interventions.MethodsHere we combined fragment length analysis, repeat-primed PCR, Southern blotting, Sanger sequencing and whole exome sequencing to obtain a comprehensive profile of genetic variants in ALS disease genes in 301 German pedigrees with familial ALS. We report C9orf72 mutations as well as variants in consensus splice sites and non-synonymous variants in protein-coding regions of ALS genes. We furthermore estimate their pathogenicity by taking into account type and frequency of the respective variant as well as segregation within the families.Results49% of our German ALS families carried a likely pathogenic variant in at least one of the earlier identified ALS genes. In 45% of the ALS families, likely pathogenic variants were detected in C9orf72, SOD1, FUS, TARDBP or TBK1, whereas the relative contribution of the other ALS genes in this familial ALS cohort was 4%. We identified several previously unreported rare variants and demonstrated the absence of likely pathogenic variants in some of the recently described ALS disease genes.ConclusionsWe here present a comprehensive genetic characterisation of German familial ALS. The present findings are of importance for genetic counselling in clinical practice, for molecular research and for the design of diagnostic gene panels or genotype-specific therapeutic interventions in Europe.
Case Series of Acute Peripheral Neuropathies in Individuals Who Received COVID-19 Vaccination
Background and Objectives: Vaccination has been critical to managing the COVID-19 pandemic. Autoimmunity of the nervous system, especially among a select set of high-risk groups, can be triggered or enhanced by the contents of vaccines. Here, we report a case series of acute peripheral neuropathies following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We report on 11 patients (range: 30–90 years old) who presented at our center between January 2021 and February 2022. Methods: We obtained the patients’ history and performed clinical neurological examination and electromyoneurography on all subjects. If necessary, magnetic resonance imaging and laboratory testing, including cerebrospinal fluid analysis and specific antibody testing, were performed. Results: Patients presented with peripheral neuropathies of acute onset between 1 and 40 days after vaccination with different types of COVID-19 vaccines. Most cases (9/11) resolved with a rapid, complete or partial recovery. Conclusions: We found acute peripheral neuropathies in a set of individuals after they received vaccines against SARS-CoV-2. Albeit our observation shows that during extensive vaccination programs, negative side effects on the peripheral nervous system might occur, most of them showed benign clinical evolution. Thus, potential side effects should not hinder the prescription of vaccines. More extensive studies are needed to elucidate populations at risk of developing peripheral neuropathies and mechanisms of autoimmune response in the nervous system.
The ipsilateral silent period: an early diagnostic marker of callosal disconnection in ALS
Introduction: Imaging studies showed affection of the corpus callosum (CC) in amyotrophic lateral sclerosis (ALS). Here, we sought to determine whether these structural alterations reflect on the functional level, using transcranial magnetic stimulation (TMS). Methods: In 31 ALS patients and 12 controls, we studied mirror movements (MM) and transcallosal inhibition (TI) using TMS. Structural integrity of transcallosal fibres was assessed using diffusion tensor imaging. Results: TI was pathologic in 25 patients (81%), 22 (71%) showed MM. Loss of TI was observed in very early stages (disease duration <4 months). No correlation was found between TI/MM and fractional anisotropy of transcallosal fibres. Discussion: These results substantiate the body of evidence towards a functional involvement of the CC in early ALS beyond microstructural alterations. Significance: TI may become a useful early diagnostic marker in ALS, even before descending tracts are affected. Diagnostic delay in ALS is high, often preventing patients from gaining access to therapeutic trials, and sensitive diagnostic tools are urgently needed. Our findings also provide insights into the pathophysiology of ALS, potentially supporting the so-called ‘top-down’ hypothesis, that is, corticoefferent (intracortical/corticospinal) propagation. Callosal affection in early stages might represent the ‘missing link’ to explain corticocortical disease-spreading.
Callosal anatomical and effective connectivity between primary motor cortices predicts visually cued bimanual temporal coordination performance
Default in-phase coupling of hand movements needs to be suppressed when temporal coordination is required for out-of-phase bimanual movements. There is lack of knowledge on how the brain overrides these default in-phase movements to enable a required interval of activity between hands. We used a visually cued bimanual temporal coordination (vc-BTC) paradigm with a constant rhythmical time base of 1 s, to test the accuracy of in-phase and out-of-phase (0.1, 0.2,…,0.9) finger tapping. We hypothesized that (1) stronger anatomical and effective interhemispheric connectivity between the hand areas of the primary motor cortex (M1 HAND ) predict higher temporal offsets between hands in the out-of-phase conditions of the vc-BTC; (2) patients with relapsing-remitting multiple sclerosis (RRMS) and clinically isolated syndrome (CIS) have reduced interhemispheric connectivity and altered between-hand coupling. Anatomical connectivity was determined by fractional anisotropy of callosal hand motor fibers (FA-hCMF). Effective connectivity was probed by short interval interhemispheric inhibition (S-IHI) using paired-coil transcranial magnetic stimulation (TMS). In healthy subjects, higher FA-hCMF and S-IHI correlated with higher temporal offsets between hands in the out-of-phase conditions of the tapping test. FA-hCMF was reduced in patients with RRMS but not in CIS, while S-IHI was reduced in both patient groups. These abnormalities were associated with smaller temporal offsets between hands leading to less deviation from the required phasing in the out-of-phase tapping conditions. Findings provide multiple levels of evidence that callosal anatomical and effective connectivity between the hand areas of the motor cortices play important roles in visually cued bimanual temporal coordination performance.
Relaxation-weighted 23Na magnetic resonance imaging maps regional patterns of abnormal sodium concentrations in amyotrophic lateral sclerosis
Objectives: Multiparametric magnetic resonance imaging (MRI) is established as a technical instrument for the characterisation of patients with amyotrophic lateral sclerosis (ALS). The contribution of relaxation-weighted sodium (23NaR) MRI remains to be defined. The aim of this study is to apply 23NaR MRI to investigate brain sodium homeostasis and map potential alterations in patients with ALS as compared with healthy controls. Materials and Methods: Seventeen patients with ALS (mean age 61.1 ± 11.4 years, m/f = 9/8) and 10 healthy control subjects (mean age 60.3 ± 15.3 years, m/f = 6/4) were examined by 23NaR MRI at 3 T. Regional sodium maps were obtained by the calculation of the weighted difference from two image data sets with different echo times (TE1 = 0.3 ms, TE2 = 25 ms). Voxel-based analysis of the relaxation-weighted maps, together with 23Na concentration maps for comparison, was performed. Results: ROI-based analyses of relaxation-weighted brain sodium concentration maps demonstrated increased sodium concentrations in the upper corticospinal tracts and in the frontal lobes in patients with ALS; no differences between ALS patients and controls were found in reference ROIs, where no involvement in ALS-associated neurodegeneration could be anticipated. Conclusion: 23NaR MRI mapped regional alterations within disease-relevant areas in ALS which correspond to the stages of the central nervous system (CNS) pathology, providing evidence that the technique is a potential biological marker of the cerebral neurodegenerative process in ALS.
Functional and structural impairment of transcallosal motor fibres in ALS: a study using transcranial magnetic stimulation, diffusion tensor imaging, and diffusion weighted spectroscopy
Imaging studies showed that the structure of the corpus callosum (CC) is affected in amyotrophic lateral sclerosis (ALS). Some clinical studies also suggest that interhemispheric connectivity is altered, since mirror movements seem to occur in ALS. Finally, reduced interhemispheric inhibition (IHI), studied by transcranial magnetic stimulation (TMS), has been reported. It is not known whether there is any association between these findings. Here, we studied the integrity of the CC in ALS on the morphological, the functional, the electrophysiological, and the clinical level. Twenty-seven right-handed ALS patients and 21 healthy right-handed controls were included. Mirror activity (MA) was quantified using surface EMG. Diffusion tensor imaging tractography was used to segment the CC and quantify fractional anisotropy (FA). We studied the diffusivity of the intra-axonal markers N-acetylaspartate+N-acetyl aspartyl glutamate D(tNAA) within the CC. IHI was studied as a marker of CC function using a double-pulse TMS protocol. ALS patients showed significantly decreased FA in the motor segment of the CC ( p  < 0.01), and IHI was significantly reduced compared to controls ( p  = 0.01). However, no differences were observed regarding D(tNAA) and MA. The morphological as well as the functional integrity of the CC are altered in ALS. IHI was reduced in ALS, associated with decreased FA in the motor CC. Patients did not exhibit increased MA. Also, no differences within the CC were observed using diffusion-weighted spectroscopy. IHI might serve as a marker of transcallosal pathway disruption in ALS, even before clinical deficits become apparent.
Phenotypes and malignancy risk of different FUS mutations in genetic amyotrophic lateral sclerosis
Objective Mutations in Fused in Sarcoma (FUS or TLS) are the fourth most prevalent in Western European familial amyotrophic lateral sclerosis (ALS) populations and have been associated with causing both early and very late disease onset. FUS aggregation, DNA repair deficiency, and genomic instability are contributors to the pathophysiology of FUS‐ALS, but their clinical significance per se and their influence on the clinical variability have yet to be sufficiently investigated. The aim of this study was to analyze genotype–phenotype correlations and malignancy rates in a newly compiled FUS‐ALS cohort. Methods We cross‐sectionally reviewed FUS‐ALS patient histories in a multicenter cohort with 36 novel cases and did a meta‐analysis of published FUS‐ALS cases reporting the largest genotype–phenotype correlation of FUS‐ALS. Results The age of onset (median 39 years, range 11–80) was positively correlated with the disease duration. C‐terminal domain mutations were found in 90%. Among all, P525L and truncating/ frameshift mutations most frequently caused juvenile onset, rapid disease progression, and atypical ALS often associated with negative family history while the R521 mutation site was associated with late disease onset and pure spinal phenotype. Malignancies were found in one of 40 patients. Interpretation We report the largest genotype–phenotype correlation of FUS‐ALS, which enables a careful prediction of the clinical course in newly diagnosed patients. In this cohort, FUS‐ALS patients did not have an increased risk for malignant diseases.
Pathological laughing and crying in amyotrophic lateral sclerosis is related to frontal cortex function
The syndrome of pathological laughing and crying (PLC) is characterized by episodes of involuntary outbursts of emotional expression. Although this phenomenon has been referred to for over a century, a clear-cut clinical definition is still lacking, and underlying pathophysiological mechanisms are not well understood. In particular, it remains ill-defined which kind of stimuli—contextually appropriate or inappropriate—elicit episodes of PLC, and if the phenomenon is a result of a lack of inhibition from the frontal cortex (“top-down-theory”) or due to an altered processing of sensory inputs at the brainstem level (“bottom-up-theory”). To address these questions, we studied ten amyotrophic lateral sclerosis (ALS) patients with PLC and ten controls matched for age, sex and education. Subjects were simultaneously exposed to either emotionally congruent or incongruent visual and auditory stimuli and were asked to rate pictures according to their emotional quality. Changes in physiological parameters (heart rate, galvanic skin response, activity of facial muscles) were recorded, and a standardized self-assessment lability score (CNS-LS) was determined. Patients were influenced in their rating behaviour in a negative direction by mood-incongruent music. Compared to controls, they were influenced by negative stimuli, i.e. they rated neutral pictures more negatively when listening to sad music. Patients rated significantly higher on the CNS-LS. In patients, changes of electromyographic activity of mimic muscles during different emotion-eliciting conditions were explained by frontal cortex dysfunction. We conclude that PLC is associated with altered emotional suggestibility and that it is preferentially elicited by mood-incongruent stimuli. In addition, physiological reactions as well as behavioural changes suggest that this phenomenon is primarily an expression of reduced inhibitory activity of the frontal cortex, since frontal dysfunction could explain changes in physiological parameters in the patient group. We consider these findings being important for the clinical interpretation of emotional reactions of ALS patients.