Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
68 result(s) for "Hackett, Scott J"
Sort by:
STAT2 deficiency and susceptibility to viral illness in humans
Severe infectious disease in children may be a manifestation of primary immunodeficiency. These genetic disorders represent important experiments of nature with the capacity to elucidate nonredundant mechanisms of human immunity. We hypothesized that a primary defect of innate antiviral immunity was responsible for unusually severe viral illness in two siblings; the proband developed disseminated vaccine strain measles following routine immunization, whereas an infant brother died after a 2-d febrile illness from an unknown viral infection. Patient fibroblasts were indeed abnormally permissive for viral replication in vitro, associated with profound failure of type I IFN signaling and absence of STAT2 protein. Sequencing of genomic DNA and RNA revealed a homozygous mutation in intron 4 of STAT2 that prevented correct splicing in patient cells. Subsequently, other family members were identified with the same genetic lesion. Despite documented infection by known viral pathogens, some of which have been more severe than normal, surviving STAT2-deficient individuals have remained generally healthy, with no obvious defects in their adaptive immunity or developmental abnormalities. These findings imply that type I IFN signaling [through interferon-stimulated gene factor 3 (ISGF3)] is surprisingly not essential for host defense against the majority of common childhood viral infections.
Human inherited complete STAT2 deficiency underlies inflammatory viral diseases
STAT2 is a transcription factor activated by type I and III IFNs. We report 23 patients with loss-of-function variants causing autosomal recessive (AR) complete STAT2 deficiency. Both cells transfected with mutant STAT2 alleles and the patients' cells displayed impaired expression of IFN-stimulated genes and impaired control of in vitro viral infections. Clinical manifestations from early childhood onward included severe adverse reaction to live attenuated viral vaccines (LAV) and severe viral infections, particularly critical influenza pneumonia, critical COVID-19 pneumonia, and herpes simplex virus type 1 (HSV-1) encephalitis. The patients displayed various types of hyperinflammation, often triggered by viral infection or after LAV administration, which probably attested to unresolved viral infection in the absence of STAT2-dependent types I and III IFN immunity. Transcriptomic analysis revealed that circulating monocytes, neutrophils, and CD8+ memory T cells contributed to this inflammation. Several patients died from viral infection or heart failure during a febrile illness with no identified etiology. Notably, the highest mortality occurred during early childhood. These findings show that AR complete STAT2 deficiency underlay severe viral diseases and substantially impacts survival.
Meningococcal Disease in Children in Merseyside, England: A 31 Year Descriptive Study
Meningococcal disease (MCD) is the leading infectious cause of death in early childhood in the United Kingdom, making it a public health priority. MCD most commonly presents as meningococcal meningitis (MM), septicaemia (MS), or as a combination of the two syndromes (MM/MS). We describe the changing epidemiology and clinical presentation of MCD, and explore associations with socioeconomic status and other risk factors. A hospital-based study of children admitted to a tertiary children's centre, Alder Hey Children's Foundation Trust, with MCD, was undertaken between 1977 to 2007 (n = 1157). Demographics, clinical presentations, microbiological confirmation and measures of deprivation were described. The majority of cases occurred in the 1-4 year age group and there was a dramatic fall in serogroup C cases observed with the introduction of the meningococcal C conjugate (MCC) vaccine. The proportion of MS cases increased over the study period, from 11% in the first quarter to 35% in the final quarter. Presentation with MS (compared to MM) and serogroup C disease (compared to serogroup B) were demonstrated to be independent risk factors for mortality, with odds ratios of 3.5 (95% CI 1.18 to 10.08) and 2.18 (95% CI 1.26 to 3.80) respectively. Cases admitted to Alder Hey were from a relatively more deprived population (mean Townsend score 1.25, 95% CI 1.09 to 1.41) than the Merseyside reference population. Our findings represent one of the largest single-centre studies of MCD. The presentation of MS is confirmed to be a risk factor of mortality from MCD. Our study supports the association between social deprivation and MCD.
UK vaccination schedule: persistence of immunity to hepatitis B in children vaccinated after perinatal exposure
Objective To assess persistence of immunity to hepatitis B (HBV) in primary school children vaccinated following perinatal exposure. Design Serological survey. Setting Five UK sites (Berkshire East, Birmingham, Buckinghamshire, Milton Keynes and Oxfordshire). Participants Children from 3 years 4 months to 10 years of age (mean age 6.2 years), vaccinated against HBV from birth following perinatal exposure. Interventions A single booster dose of the paediatric formulation of a recombinant HBV vaccine. Main outcome measures Titres of antibody against hepatitis B Surface Antigen (anti-HBs) measured immediately before and 21–35 days after the HBV vaccine booster. Results Prebooster anti-HBs titres were >10 mIU/ml in 84.6% of children (n=26; 95% CI 65.1 to 95.6%). All children (n=25, 95% CI 86.3 to 100%) had titres >100 mIU/ml after the booster. Conclusions This study of antibody persistence among UK children born to hepatitis B infected women, immunised with a 3-dose infant schedule with a toddler booster suggests sustained immunity through early childhood. These data should prompt further studies to address the need for a preschool booster. Trial registration Eudract Number 2008-004785-98.
Human inherited complete STAT2 deficiency underlies inflammatory viral diseases
STAT2 is a transcription factor activated by type I and III IFNs. We report 23 patients with loss-of-function variants causing autosomal recessive (AR) complete STAT2 deficiency. Both cells transfected with mutant STAT2 alleles and the patients' cells displayed impaired expression of IFN-stimulated genes and impaired control of in vitro viral infections. Clinical manifestations from early childhood onward included severe adverse reaction to live attenuated viral vaccines (LAV) and severe viral infections, particularly critical influenza pneumonia, critical COVID-19 pneumonia, and herpes simplex virus type 1 (HSV-1) encephalitis. The patients displayed various types of hyperinflammation, often triggered by viral infection or after LAV administration, which probably attested to unresolved viral infection in the absence of STAT2-dependent types I and III IFN immunity. Transcriptomic analysis revealed that circulating monocytes, neutrophils, and CD8+ memory T cells contributed to this inflammation. Several patients died from viral infection or heart failure during a febrile illness with no identified etiology. Notably, the highest mortality occurred during early childhood. These findings show that AR complete STAT2 deficiency underlay severe viral diseases and substantially impacts survival.
Improved case confirmation in meningococcal disease with whole blood Taqman PCR
Background: The clinical diagnosis of meningococcal disease (MCD) can be difficult. Non-culture methods like the previous ELISA meningococcal PCR improved case confirmation rates, but were not ideal. A Taqman meningococcal PCR, using DNA extracted from serum (S-Taqman), which has an improved sensitivity compared to the ELISA method in vitro, was introduced into clinical practice in July 1997. A new whole blood DNA extraction method for Taqman (WB-Taqman) was introduced in September 1999. Aims: To determine the degree of improvement in the confirmation rate in clinically diagnosed MCD, following the introduction of WB-Taqman. Methods: A total of 192 patients (WB-Taqman) with possible or probable MCD, including those admitted to our paediatric intensive care unit, were studied. Admission EDTA samples obtained were sent for bacterial DNA detection at the Meningococcal Reference Unit (MRU), Manchester. These patients were compared to 319 patients with possible and probable MCD, seen at the same hospital prior to the introduction of WB-Taqman. Results: Following the introduction of WB-Taqman, 82 of the 95 probable cases (88%) had a positive meningococcal PCR result. This gives a diagnostic sensitivity and specificity for WB-Taqman of 87% and 100% respectively. Following WB-Taqman all blood culture positive patients were also PCR positive. Confirmation of cases by PCR rose from 47% (S-Taqman, n = 166) to 88% (WB-Taqman). When all confirmatory tests were included, case confirmation increased from 72% (S-Taqman) to 94% (WB-Taqman). Conclusion: The sensitivity of PCR in confirming clinical MCD has improved significantly with this new method. The gold standard for confirming cases of MCD is now the WB-Taqman PCR.
Dense sampling of bird diversity increases power of comparative genomics
Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1–4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families—including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confdently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specifc variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will ofer new perspectives on evolutionary processes in cross-species comparative analyses and assist in eforts to conserve species.
Earth BioGenome Project
Increasing our understanding of Earth’s biodiversity and responsibly stewarding its resources are among the most crucial scientific and social challenges of the new millennium. These challenges require fundamental new knowledge of the organization, evolution, functions, and interactions among millions of the planet’s organisms. Herein, we present a perspective on the Earth BioGenome Project (EBP), a moonshot for biology that aims to sequence, catalog, and characterize the genomes of all of Earth’s eukaryotic biodiversity over a period of 10 years. The outcomes of the EBP will inform a broad range of major issues facing humanity, such as the impact of climate change on biodiversity, the conservation of endangered species and ecosystems, and the preservation and enhancement of ecosystem services. We describe hurdles that the project faces, including data-sharing policies that ensure a permanent, freely available resource for future scientific discovery while respecting access and benefit sharing guidelines of the Nagoya Protocol. We also describe scientific and organizational challenges in executing such an ambitious project, and the structure proposed to achieve the project’s goals. The far-reaching potential benefits of creating an open digital repository of genomic information for life on Earth can be realized only by a coordinated international effort.
Learning causal networks using inducible transcription factors and transcriptome‐wide time series
We present IDEA (the Induction Dynamics gene Expression Atlas), a dataset constructed by independently inducing hundreds of transcription factors (TFs) and measuring timecourses of the resulting gene expression responses in budding yeast. Each experiment captures a regulatory cascade connecting a single induced regulator to the genes it causally regulates. We discuss the regulatory cascade of a single TF, Aft1, in detail; however, IDEA contains > 200 TF induction experiments with 20 million individual observations and 100,000 signal‐containing dynamic responses. As an application of IDEA, we integrate all timecourses into a whole‐cell transcriptional model, which is used to predict and validate multiple new and underappreciated transcriptional regulators. We also find that the magnitudes of coefficients in this model are predictive of genetic interaction profile similarities. In addition to being a resource for exploring regulatory connectivity between TFs and their target genes, our modeling approach shows that combining rapid perturbations of individual genes with genome‐scale time‐series measurements is an effective strategy for elucidating gene regulatory networks. Synopsis A transcriptional induction system is used to conditionally express hundreds of transcription factors in yeast. The resulting time‐course transcriptomics data are used to train parametric models and predict regulatory connections between genes. Chechik & Koller model is used to obtain kinetic parameters for > 100,000 regulatory connections between transcription factors and their target genes. Regulator‐target gene connections are predicted with a dynamical systems model. Transcription factor induction experiments reveal new regulatory connections as well as transcriptional feedback loops and cascades at a genome‐wide scale. The presented data and modeling results can be explored interactively at https://idea.research.calicolabs.com . Graphical Abstract A transcriptional induction system is used to conditionally express hundreds of transcription factors in yeast. The resulting time‐course transcriptomics data are used to train parametric models and predict regulatory connections between genes.
Harnessing a High Cargo-Capacity Transposon for Genetic Applications in Vertebrates
Viruses and transposons are efficient tools for permanently delivering foreign DNA into vertebrate genomes but exhibit diminished activity when cargo exceeds 8 kilobases (kb). This size restriction limits their molecular genetic and biotechnological utility, such as numerous therapeutically relevant genes that exceed 8 kb in size. Furthermore, a greater payload capacity vector would accommodate more sophisticated cis cargo designs to modulate the expression and mutagenic risk of these molecular therapeutics. We show that the Tol2 transposon can efficiently integrate DNA sequences larger than 10 kb into human cells. We characterize minimal sequences necessary for transposition (miniTol2) in vivo in zebrafish and in vitro in human cells. Both the 8.5-kb Tol2 transposon and 5.8-kb miniTol2 engineered elements readily function to revert the deficiency of fumarylacetoacetate hydrolase in an animal model of hereditary tyrosinemia type 1. Together, Tol2 provides a novel nonviral vector for the delivery of large genetic payloads for gene therapy and other transgenic applications.