Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
16
result(s) for
"Haffner, Philippe"
Sort by:
A Sustained Immune Response Supports Long-Term Antiviral Immune Priming in the Pacific Oyster, Crassostrea gigas
by
Chaparro, Cristian
,
Mitta, Guillaume
,
Barrachina, Celia
in
Adaptive immunity
,
Animals
,
antiviral response
2020
In the last decade, important discoveries have shown that resistance to reinfection can be achieved without a functional adaptive immune system, introducing the concept of innate immune memory in invertebrates. However, this field has been constrained by the limited number of molecular mechanisms evidenced to support these phenomena. Taking advantage of an invertebrate species, the Pacific oyster ( Crassostrea gigas ), in which we evidenced one of the longest and most effective periods of protection against viral infection observed in an invertebrate, we provide the first comprehensive transcriptomic analysis of antiviral innate immune priming. We show that priming with poly(I·C) induced a massive upregulation of immune-related genes, which control subsequent viral infection, and it was maintained for over 4 months after priming. This acquired resistant mechanism reinforces the molecular foundations of the sustained response model of immune priming. It opens the way to pseudovaccination to prevent the recurrent diseases that currently afflict economically or ecologically important invertebrates. Over the last decade, innate immune priming has been evidenced in many invertebrate phyla. If mechanistic models have been proposed, molecular studies aiming to substantiate these models have remained scarce. We reveal here the transcriptional signature associated with immune priming in the oyster Crassostrea gigas . Oysters were fully protected against Ostreid herpesvirus 1 (OsHV-1), a major oyster pathogen, after priming with poly(I·C), which mimics viral double-stranded RNA. Global analysis through RNA sequencing of oyster and viral genes after immune priming and viral infection revealed that poly(I·C) induces a strong antiviral response that impairs OsHV-1 replication. Protection is based on a sustained upregulation of immune genes, notably genes involved in the interferon pathway and apoptosis, which control subsequent viral infection. This persistent antiviral alert state remains active over 4 months and supports antiviral protection in the long term. This acquired resistance mechanism reinforces the molecular foundations of the sustained response model of immune priming. It further opens the way to applications (pseudovaccination) to cope with a recurrent disease that causes dramatic economic losses in the shellfish farming industry worldwide. IMPORTANCE In the last decade, important discoveries have shown that resistance to reinfection can be achieved without a functional adaptive immune system, introducing the concept of innate immune memory in invertebrates. However, this field has been constrained by the limited number of molecular mechanisms evidenced to support these phenomena. Taking advantage of an invertebrate species, the Pacific oyster ( Crassostrea gigas ), in which we evidenced one of the longest and most effective periods of protection against viral infection observed in an invertebrate, we provide the first comprehensive transcriptomic analysis of antiviral innate immune priming. We show that priming with poly(I·C) induced a massive upregulation of immune-related genes, which control subsequent viral infection, and it was maintained for over 4 months after priming. This acquired resistant mechanism reinforces the molecular foundations of the sustained response model of immune priming. It opens the way to pseudovaccination to prevent the recurrent diseases that currently afflict economically or ecologically important invertebrates.
Journal Article
Large-Scale Epidemiological Study to Identify Bacteria Pathogenic to Pacific Oyster Crassostrea gigas and Correlation Between Virulence and Metalloprotease-like Activity
by
Robert, Maeva
,
Haffner, Philippe
,
Garcia, Céline
in
animal pathogenic bacteria
,
Animals
,
Aquaculture
2010
A 4-year bacteriological survey (2003-2007) of four molluscs cultivated in France and faced with mortality episodes was performed by the French shellfish pathology network. The more abundant bacteria isolated during 92 mortality episodes, occurring mainly in Pacific oyster Crassostrea gigas, were identified by genotyping methods. It allowed us both to confirm the representativeness of Vibrio splendidus and Vibrio aestuarianus bacterial strains and to identify both a large number of Vibrio harveyi-related strains mainly detected during 2007 oyster mortality outbreaks and to a lesser extent bacterial strains identified as Shewanella colwelliana. Because metalloprotease has been reported to constitute a virulence factor in a few Vibrio strains pathogenic for C. gigas, several bacterial strains isolated in this study were screened to evaluate their pathogenicity in C. gigas spat by experimental infection and their ability to produce metalloprotease-like activity in the culture supernatant fluids. A high level (84%) of concordant results between azocaseinase activities and virulence of strains was obtained in this study. Because bacterial metalloprotease activities appeared as a common feature of pathogenic bacteria strains associated with mortality events of C. gigas reared in France, this phenotypic test could be useful for the evaluation of virulence in bacterial strains associated with such mortality episodes.
Journal Article
Differential basal expression of immune genes confers Crassostrea gigas resistance to Pacific oyster mortality syndrome
by
Escoubas, Jean-Michel
,
Allienne, Jean-François
,
Vidal-Dupiol, Jérémie
in
Animal Genetics and Genomics
,
Antiviral agents
,
Antiviral drugs
2020
Background
As a major threat to the oyster industry, Pacific Oyster Mortality Syndrome (POMS) is a polymicrobial disease affecting the main oyster species farmed across the world. POMS affects oyster juveniles and became panzootic this last decade, but POMS resistance in some oyster genotypes has emerged. While we know some genetic loci associated with resistance, the underlying mechanisms remained uncharacterized. So, we developed a comparative transcriptomic approach using basal gene expression profiles between different oyster biparental families with contrasted phenotypes when confronted to POMS (resistant or susceptible).
Results
We showed that POMS resistant oysters show differential expression of genes involved in stress responses, protein modifications, maintenance of DNA integrity and repair, and immune and antiviral pathways. We found similarities and clear differences among different molecular pathways in the different resistant families. These results suggest that the resistance process is polygenic and partially varies according to the oyster genotype.
Conclusions
We found differences in basal expression levels of genes related to TLR-NFκB, JAK-STAT and STING-RLR pathways. These differences could explain the best antiviral response, as well as the robustness of resistant oysters when confronted to POMS. As some of these genes represent valuable candidates for selective breeding, we propose future studies should further examine their function.
Journal Article
Several strains, one disease: experimental investigation of Vibrio aestuarianus infection parameters in the Pacific oyster, Crassostrea gigas
by
Dégremont, Lionel
,
Tourbiez, Delphine
,
Kozic-Djellouli, Angélique
in
Animals
,
at-risk population
,
Bacteria
2017
This study investigated oyster infection dynamics by different strains of
Vibrio aestuarianus
isolated before and after the apparent re-emergence of this pathogen observed in France in 2011. We conducted experiments to compare minimal infective dose, lethal dose 50 and bacterial shedding for six
V. aestuarianus
strains. Whatever the strain used, mortality was induced in juvenile oysters by intramuscular injection and reached 90–100% of mortality within 5 days. Moreover, bacterial shedding was comparable among strains and reached its maximum after 20 h (≈10 EXP5 bacteria/mL/animal). Similarly, our first estimations of lethal dose 50 were comparable among strains (minimal infective dose around 0.4 × 10EXP5 bacteria/mL and LD50 around 10EXP5 bacteria/mL) by using seawater containing freshly shed bacteria. These results indicate that, at least with these criteria, despite
V. aestuarianus
strains genetic diversity, the disease process is similar. The strains isolated after the apparent re-emergence of the bacteria in 2011, do not present a more acute virulence phenotype than the reference strains isolated between 2002 and 2007. Finally, our study provides original and noteworthy data indicating that infected oysters shed bacteria at a level above the threshold of LD50 a few days before they die, meaning that infection is expected to spread in a susceptible population.
Journal Article
Immune-suppression by OsHV-1 viral infection causes fatal bacteraemia in Pacific oysters
2018
Infectious diseases are mostly explored using reductionist approaches despite repeated evidence showing them to be strongly influenced by numerous interacting host and environmental factors. Many diseases with a complex aetiology therefore remain misunderstood. By developing a holistic approach to tackle the complexity of interactions, we decipher the complex intra-host interactions underlying Pacific oyster mortality syndrome affecting juveniles of
Crassostrea gigas
, the main oyster species exploited worldwide. Using experimental infections reproducing the natural route of infection and combining thorough molecular analyses of oyster families with contrasted susceptibilities, we demonstrate that the disease is caused by multiple infection with an initial and necessary step of infection of oyster haemocytes by the
Ostreid herpesvirus
OsHV-1 µVar. Viral replication leads to the host entering an immune-compromised state, evolving towards subsequent bacteraemia by opportunistic bacteria. We propose the application of our integrative approach to decipher other multifactorial diseases that affect non-model species worldwide.
Pacific oyster mortality syndrome is a poorly understood cause of mortality in commercially important oyster species. Here, the authors use multiple infection experiments to show that the syndrome is caused by sequential infection by herpesvirus and opportunistic bacteria.
Journal Article
Species-specific mechanisms of cytotoxicity toward immune cells determine the successful outcome of Vibrio infections
by
Labreuche, Yannick
,
Torres, Marta
,
Le Roux, Frédérique
in
Animals
,
Biodiversity
,
Biodiversity and Ecology
2019
Vibrio species cause infectious diseases in humans and animals, but they can also live as commensals within their host tissues. How Vibrio subverts the host defenses to mount a successful infection remains poorly understood, and this knowledge is critical for predicting and managing disease. Here, we have investigated the cellular and molecular mechanisms underpinning infection and colonization of 2 virulent Vibrio species in an ecologically relevant host model, oyster, to study interactions with marine Vibrio species. All Vibrio strains were recognized by the immune system, but only nonvirulent strains were controlled. We showed that virulent strains were cytotoxic to hemocytes, oyster immune cells. By analyzing host and bacterial transcriptional responses to infection, together with Vibrio gene knock-outs, we discovered that Vibrio crassostreae and Vibrio tasmaniensis use distinct mechanisms to cause hemocyte lysis. Whereas V. crassostreae cytotoxicity is dependent on a direct contact with hemocytes and requires an ancestral gene encoding a protein of unknown function, r5.7, V. tasmaniensis cytotoxicity is dependent on phagocytosis and requires intracellular secretion of T6SS effectors. We conclude that proliferation of commensal vibrios is controlled by the host immune system, preventing systemic infections in oysters, whereas the successful infection of virulent strains relies on Vibrio species-specific molecular determinants that converge to compromise host immune cell function, allowing evasion of the host immune system.
Journal Article
Dual transcriptomics of virus-host interactions: comparing two Pacific oyster families presenting contrasted susceptibility to ostreid herpesvirus 1
by
Dégremont, Lionel
,
Mauduit, Florian
,
Segarra, Amélie
in
Analysis
,
Animal Genetics and Genomics
,
Animals
2014
Background
Massive mortality outbreaks affecting Pacific oyster (
Crassostrea gigas
) spat in various countries have been associated with the detection of a herpesvirus called ostreid herpesvirus type 1 (OsHV-1). However, few studies have been performed to understand and follow viral gene expression, as it has been done in vertebrate herpesviruses. In this work, experimental infection trials of
C. gigas
spat with OsHV-1 were conducted in order to test the susceptibility of several bi-parental oyster families to this virus and to analyze host-pathogen interactions using
in vivo
transcriptomic approaches.
Results
The divergent response of these oyster families in terms of mortality confirmed that susceptibility to OsHV-1 infection has a significant genetic component. Two families with contrasted survival rates were selected. A total of 39 viral genes and five host genes were monitored by real-time PCR. Initial results provided information on (i) the virus cycle of OsHV-1 based on the kinetics of viral DNA replication and transcription and (ii) host defense mechanisms against the virus.
Conclusions
In the two selected families, the detected amounts of viral DNA and RNA were significantly different. This result suggests that Pacific oysters are genetically diverse in terms of their susceptibility to OsHV-1 infection. This contrasted susceptibility was associated with dissimilar host gene expression profiles. Moreover, the present study showed a positive correlation between viral DNA amounts and the level of expression of selected oyster genes.
Journal Article
Diversity and varying predation capacities of Amoebozoa against opportunistic vibrios in contrasting Mediterranean coastal environments
2025
Free-living amoebae (FLA) are ubiquitous and can be found in many types of environments including soil, freshwater, air and marine environments. They feed on various microorganisms and can play an important role in the food web and its dynamics. We previously described that FLAs belonging to the Vannella genus from the oyster farming area of the Thau lagoon in France could establish stable interactions with Vibrionaceae and could play a role in the selection of some virulence factors, potentially influencing pathogen dynamics. To further investigate the ecological interactions between FLA populations and Vibrionaceae in Mediterranean coastal waters, we conducted monthly sampling for one year at three contrasting sites. Free-living amoebae populations were isolated by culturing water and sediment samples on different bacterial lawns, including E. coli or V. tasmaniensis, V. crassostreae and V. harveyi. Amoebozoan diversity was analyzed using v4-18S barcoding and revealed distinct communities between the sediment and the water column, with Vannellidae significantly enriched in the water column whereas Paramoebidae were significantly enriched in the sediments. Selection of grazers on different bacterial lawns revealed that V. tasmaniensis inhibited the growth of most Vannellidae, whereas V. crassostreae inhibited the growth of a large proportion of Paramoebidae. These differences were further confirmed in functional grazing assays using isolates belonging to each Amoebozoa taxonomic group. Overall, our results highlight the need for more comprehensive studies of the diversity and population dynamics of Amoebozoa in marine environments, and that the role of these diversified grazers in shaping vibrio communities is complex and still poorly characterized.
Cooperation and cheating orchestrate Vibrio assemblages and polymicrobial synergy in oysters infected with OsHV-1 virus
by
Labreuche, Yannick
,
Morga, Benjamin
,
Chaparro, Cristian
in
Cheating
,
Herpes viruses
,
Interspecific relationships
2023
Polymicrobial diseases significantly impact the health of humans and animals but remain understudied in natural systems. We recently described the Pacific Oyster Mortality Syndrome (POMS), a polymicrobial disease that impacts oyster production and is prevalent worldwide. Analysis of POMS-infected oysters on the French North Atlantic coast revealed that the disease involves co-infection with the endemic ostreid herpesvirus 1 (OsHV-1) and virulent bacterial species such as Vibrio crassostreae. However, it is unknown whether consistent Vibrio populations are associated with POMS in different regions, how Vibrio contribute to POMS, and how they interact with the OsHV-1 virus during pathogenesis. We resolved the Vibrio population structure in oysters from a Mediterranean ecosystem and investigated their functions in POMS development. We find that Vibrio harveyi and Vibrio rotiferianus are the predominant species found in OsHV-1-diseased oysters and show that OsHV-1 is necessary to reproduce the partition of the Vibrio community observed in the field. By characterizing the interspecific interactions between OsHV-1, V. harveyi and V. rotiferianus, we find that only V. harveyi synergizes with OsHV-1. When co-infected, OsHV-1 and V. harveyi behave cooperatively by promoting mutual growth and accelerating oyster death. V. harveyi showed high virulence potential in oysters and dampened host cellular defenses, making oysters a more favorable niche for microbe colonization. We next investigated the interactions underlying the co-occurrence of diverse Vibrio species in diseased oysters. We found that V. harveyi harbors genes responsible for the biosynthesis and uptake of a key siderophore called vibrioferrin. This important resource promotes the growth of V. rotiferianus, a cheater that efficiently colonizes oysters during POMS without costly investment in host manipulation nor metabolite sharing. By connecting field-based approaches, laboratory infection assays and functional genomics, we have uncovered a web of interdependencies that shape the structure and function of the POMS pathobiota. We showed that cooperative behaviors contribute to synergy between bacterial and viral co-infecting partners. Additional cheating behaviors further shape the polymicrobial consortium. Controlling such behaviors or countering their effects opens new avenues for mitigating polymicrobial diseases.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://doi.org/10.12770/173c0414-a3ca-4a79-b6b2-cd424ee90593
Epigenetic then genetic variations underpin rapid adaptation of oyster populations (Crassostrea gigas) to Pacific Oyster Mortality Syndrome (POMS)
by
Roux, Fabrice
,
Morga, Benjamin
,
De Lorgeril, Julien
in
Adaptation
,
Bisulfite
,
Correlation analysis
2023
Disease emergence is accelerating in response to human activity-induced global changes. Understanding the mechanisms by which host populations can rapidly adapt to this threat will be crucial for developing future management practices. Pacific Oyster Mortality Syndrome (POMS) imposes a substantial and recurrent selective pressure on oyster populations (Crassostrea gigas). Rapid adaptation to this disease may arise through both genetic and epigenetic mechanisms. In this study, we used a combination of whole exome capture of bisulfite-converted DNA, next-generation sequencing, and (epi)genome-wide association mapping, to show that natural oyster populations differentially exposed to POMS displayed signatures of selection both in their genome (single nucleotide polymorphisms) and epigenome (CG-context DNA methylation). Consistent with higher resistance to POMS, the genes targeted by genetic and epigenetic variations were mainly related to host immunity. By combining correlation analyses, DNA methylation quantitative trait loci, and variance partitioning, we revealed that a third of the observed phenotypic variation was explained by interactions between the genetic sequence and epigenetic information, ~14% by the genetic sequence, and up to 25% by the epigenome alone. Thus, as well as genetic adaptation, epigenetic mechanisms governing immune responses contribute significantly to the rapid adaptation of hosts to emerging infectious diseases.Competing Interest StatementThe authors have declared no competing interest.