Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1,133 result(s) for "Hain, Christopher"
Sort by:
Global Flash Droughts Characteristics: Onset, Duration and Extent at Watershed Scales
Addressing impacts of flash droughts (FDs) on the water-food nexus requires a understanding of FD mechanisms and drivers at the watershed level. Examining climatic drivers, dry and wet spell lengths from 1980 to 2019, we analyzed FD spatial and temporal characteristics, emphasizing areal extent, onset time, and duration. Our findings reveal substantial variations in FDs among different watersheds. Notably, watersheds in the Southern Hemisphere are witnessing expanding, faster-developing, and longer-lasting FDs, aligning with climate variations in precipitation and temperature. Additionally, at the watershed scale, the onset and duration of FDs are more influenced by the intensity (magnitude and variability) of climatic drivers than the average length of wet and dry periods. FD-extents, however, correlate with both climatic conditions and wet and dry periods, underscoring watershed connectivity. Ultimately, our results underscore the necessity for research to comprehend the interplay between FDs and watershed characteristics and how it manifests in overall water resource management.
Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest
Crop yield estimates over large areas are conventionally made using weather observations, but a comprehensive understanding of the effects of various environmental indicators, observation frequency, and the choice of prediction algorithm remains elusive. Here we present a thorough assessment of county-level maize yield prediction in U.S. Midwest using six statistical/machine learning algorithms (Lasso, Support Vector Regressor, Random Forest, XGBoost, Long-short term memory (LSTM), and Convolutional Neural Network (CNN)) and an extensive set of environmental variables derived from satellite observations, weather data, land surface model results, soil maps, and crop progress reports. Results show that seasonal crop yield forecasting benefits from both more advanced algorithms and a large composite of information associated with crop canopy, environmental stress, phenology, and soil properties (i.e. hundreds of features). The XGBoost algorithm outperforms other algorithms both in accuracy and stability, while deep neural networks such as LSTM and CNN are not advantageous. The compositing interval (8-day, 16-day or monthly) of time series variable does not have significant effects on the prediction. Combining the best algorithm and inputs improves the prediction accuracy by 5% when compared to a baseline statistical model (Lasso) using only basic climatic and satellite observations. Reasonable county-level yield foresting is achievable from early June, almost four months prior to harvest. At the national level, early-season (June and July) prediction from the best model outperforms that of the United States Department of Agriculture (USDA) World Agricultural Supply and Demand Estimates (WASDE). This study provides insights into practical crop yield forecasting and the understanding of yield response to climatic and environmental conditions.
The Role of Local Heating in the 2015 Indian Heat Wave
India faced a major heat wave during the summer of 2015. Temperature anomalies peaked in the dry period before the onset of the summer monsoon, suggesting that local land-atmosphere feedbacks involving desiccated soils and vegetation might have played a role in driving the heat extreme. Upon examination of in situ data, reanalysis, satellite observations, and land surface models, we find that the heat wave included two distinct peaks: one in late May, and a second in early June. During the first peak we find that clear skies led to a positive net radiation anomaly at the surface, but there is no significant sensible heat flux anomaly within the core of the heat wave affected region. By the time of the second peak, however, soil moisture had dropped to anomalously low levels in the core heat wave region, net surface radiation was anomalously high, and a significant positive sensible heat flux anomaly developed. This led to a substantial local forcing on air temperature that contributed to the intensity of the event. The analysis indicates that the highly agricultural landscape of North and Central India can reinforce heat extremes under dry conditions.
Changes in Land Use Enhance the Sensitivity of Tropical Ecosystems to Fire-Climate Extremes
The Pantanal, the largest contiguous wetland in the world with a high diversity of ecosystems and habitat for several endangered species, was impacted by record-breaking wildfires in 2020. In this study, we integrate satellite and modeling data that enable exploration of natural and human contributing factors to the unprecedented 2020 fires. We demonstrate that the fires were fueled by an exceptional multi-year drought, but dry conditions solely could not explain the spatial patterns of burning. Our analysis reveals how human-caused fires exacerbated drought effects on natural ecosystem within the Pantanal, with large burned fractions primarily over natural (52%), and low cattle density areas (44%) in 2020. The post-fire ecosystem and hydrology changes also had strong ecological effects, with vegetation productivity less than − 1.5 σ over more than 30% of the natural and conservation areas. In contrast to more managed areas, there was a clear decrease in evaporation (by ~ 9%) and an increase in runoff (by ~ 5%) over the natural areas, with long-term impacts on ecosystem recovery and fire risk. This study provides the first tropical evidence outside rainforests of the synergy between climate, land management and fires, and the associated impacts on the ecosystem and hydrology over the largest contiguous wetlands in the world.
Assimilation of Gridded GRACE Terrestrial Water Storage Estimates in the North American Land Data Assimilation System
The objective of the North American Land Data Assimilation System (NLDAS) is to provide best-available estimates of near-surface meteorological conditions and soil hydrological status for the continental United States. To support the ongoing efforts to develop data assimilation (DA) capabilities for NLDAS, the results of Gravity Recovery and Climate Experiment (GRACE) DA implemented in a manner consistent with NLDAS development are presented. Following previous work,GRACE terrestrial water storage (TWS) anomaly estimates are assimilated into the NASA Catchment land surface model using an ensemble smoother. In contrast to many earlier GRACE DA studies, a gridded GRACE TWS product is assimilated, spatially distributed GRACE error estimates are accounted for, and the impact that GRACE scaling factors have on assimilation is evaluated. Comparisons with quality-controlled in situ observations indicate that GRACE DA has a positive impact on the simulation of unconfined groundwater variability across the majority of the eastern United States and on the simulation of surface and root zone soil moisture across the country. Smaller improvements are seen in the simulation of snow depth, and the impact of GRACE DA on simulated river discharge and evapotranspiration is regionally variable. The use of GRACE scaling factors during assimilation improved DA results in the western United States but led to small degradations in the eastern United States. The study also found comparable performance between the use of gridded and basin-averaged GRACE observations in assimilation. Finally, the evaluations presented in the paper indicate that GRACE DA can be helpful in improving the representation of droughts.
Evapotranspiration estimates derived using thermal-based satellite remote sensing and data fusion for irrigation management in California vineyards
Irrigation in the Central Valley of California is essential for successful wine grape production. With reductions in water availability in much of California due to drought and competing water-use interests, it is important to optimize irrigation management strategies. In the current study, we investigate the utility of satellite-derived maps of evapotranspiration (ET) and the ratio of actual-to-reference ET (fRET) based on remotely sensed land-surface temperature (LST) imagery for monitoring crop water use and stress in vineyards. The Disaggregated Atmosphere Land EXchange Inverse (ALEXI/DisALEXI) surface-energy balance model, a multi-scale ET remote-sensing framework with operational capabilities, is evaluated over two Pinot noir vineyard sites in central California that are being monitored as part of the Grape Remote-Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX). A data fusion approach is employed to combine ET time-series retrievals from multiple satellite platforms to generate estimates at both the high spatial (30 m) and temporal (daily) resolution required for field-scale irrigation management. Comparisons with micrometeorological data indicate reasonable model performance, with mean absolute errors of 0.6 mm day−1 in ET at the daily time step and minimal bias. Values of fRET agree well with tower observations and reflect known irrigation. Spatiotemporal analyses illustrate the ability of ALEXI/DisALEXI/data fusion package to characterize heterogeneity in ET and fRET both within a vineyard and over the surrounding landscape. These findings will inform the development of strategies for integrating ET mapping time series into operational irrigation management framework, providing actionable information regarding vineyard water use and crop stress at the field and regional scale and at daily to multi-annual time scales.
Microwave implementation of two-source energy balance approach for estimating evapotranspiration
A newly developed microwave (MW) land surface temperature (LST) product is used to substitute thermal infrared (TIR)-based LST in the Atmosphere–Land Exchange Inverse (ALEXI) modeling framework for estimating evapotranspiration (ET) from space. ALEXI implements a two-source energy balance (TSEB) land surface scheme in a time-differential approach, designed to minimize sensitivity to absolute biases in input records of LST through the analysis of the rate of temperature change in the morning. Thermal infrared retrievals of the diurnal LST curve, traditionally from geostationary platforms, are hindered by cloud cover, reducing model coverage on any given day. This study tests the utility of diurnal temperature information retrieved from a constellation of satellites with microwave radiometers that together provide six to eight observations of Ka-band brightness temperature per location per day. This represents the first ever attempt at a global implementation of ALEXI with MW-based LST and is intended as the first step towards providing all-weather capability to the ALEXI framework. The analysis is based on 9-year-long, global records of ALEXI ET generated using both MW- and TIR-based diurnal LST information as input. In this study, the MW-LST (MW-based LST) sampling is restricted to the same clear-sky days as in the IR-based implementation to be able to analyze the impact of changing the LST dataset separately from the impact of sampling all-sky conditions. The results show that long-term bulk ET estimates from both LST sources agree well, with a spatial correlation of 92 % for total ET in the Europe–Africa domain and agreement in seasonal (3-month) totals of 83–97 % depending on the time of year. Most importantly, the ALEXI-MW (MW-based ALEXI) also matches ALEXI-IR (IR-based ALEXI) very closely in terms of 3-month inter-annual anomalies, demonstrating its ability to capture the development and extent of drought conditions. Weekly ET output from the two parallel ALEXI implementations is further compared to a common ground measured reference provided by the Fluxnet consortium. Overall, the two model implementations generate similar performance metrics (correlation and RMSE) for all but the most challenging sites in terms of spatial heterogeneity and level of aridity. It is concluded that a constellation of MW satellites can effectively be used to provide LST for estimating ET through ALEXI, which is an important step towards all-sky satellite-based retrieval of ET using an energy balance framework.
Daily Landsat-scale evapotranspiration estimation over a forested landscape in North Carolina, USA, using multi-satellite data fusion
As a primary flux in the global water cycle, evapotranspiration (ET) connects hydrologic and biological processes and is directly affected by water and land management, land use change and climate variability. Satellite remote sensing provides an effective means for diagnosing ET patterns over heterogeneous landscapes; however, limitations on the spatial and temporal resolution of satellite data, combined with the effects of cloud contamination, constrain the amount of detail that a single satellite can provide. In this study, we describe an application of a multi-sensor ET data fusion system over a mixed forested/agricultural landscape in North Carolina, USA, during the growing season of 2013. The fusion system ingests ET estimates from the Two-Source Energy Balance Model (TSEB) applied to thermal infrared remote sensing retrievals of land surface temperature from multiple satellite platforms: hourly geostationary satellite data at 4 km resolution, daily 1 km imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) and biweekly Landsat thermal data sharpened to 30 m. These multiple ET data streams are combined using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to estimate daily ET at 30 m resolution to investigate seasonal water use behavior at the level of individual forest stands and land cover patches. A new method, also exploiting the STARFM algorithm, is used to fill gaps in the Landsat ET retrievals due to cloud cover and/or the scan-line corrector (SLC) failure on Landsat 7. The retrieved daily ET time series agree well with observations at two AmeriFlux eddy covariance flux tower sites in a managed pine plantation within the modeling domain: US-NC2 located in a mid-rotation (20-year-old) loblolly pine stand and US-NC3 located in a recently clear-cut and replanted field site. Root mean square errors (RMSEs) for NC2 and NC3 were 0.99 and 1.02 mm day−1, respectively, with mean absolute errors of approximately 29 % at the daily time step, 12 % at the monthly time step and 0.7 % over the full study period at the two flux tower sites. Analyses of water use patterns over the plantation indicate increasing seasonal ET with stand age for young to mid-rotation stands up to 20 years, but little dependence on age for older stands. An accounting of consumptive water use by major land cover classes representative of the modeling domain is presented, as well as relative partitioning of ET between evaporation (E) and transpiration (T) components obtained with the TSEB. The study provides new insights about the effects of management and land use change on water yield over forested landscapes.
High-Resolution SMAP Satellite Soil Moisture Product: Exploring the Opportunities
Knowledge of the temporal dynamics and spatial variability of soil moisture is crucial in understanding many environmental processes and their impacts on plant fertility, crop yields, droughts, or exposure to flood hazards. The Soil Moisture Active Passive (SMAP) satellite was launched on 31 January 2015 by the National Aeronautics and Space Administration (NASA) to provide SSM using brightness temperature through its active (radar, 3 km) and passive (radiometer, 36 km) sensors at an intermediate resolution of 9 km. [...]we utilized these advancements to further postprocess the downscaled soil moisture dataset at 1-km spatial resolution and provide a more accurate and reliable product. According to the U.S. Department of Agriculture National Agricultural Statistical Service (USDA NASS), the rice farmlands are flooded and seeded each year from late April through May.
Developing a Remotely Sensed Drought Monitoring Indicator for Morocco
Drought is one of the most serious climatic and natural disasters inflicting serious impacts on the socio-economy of Morocco, which is characterized both by low-average annual rainfall and high irregularity in the spatial distribution and timing of precipitation across the country. This work aims to develop a comprehensive and integrated method for drought monitoring based on remote sensing techniques. The main input parameters are derived monthly from satellite data at the national scale and are then combined to generate a composite drought index presenting different severity classes of drought. The input parameters are: Standardized Precipitation Index calculated from satellite-based precipitation data since 1981 (CHIRPS), anomalies in the day-night difference of Land Surface Temperature as a proxy for soil moisture, Normalized Difference Vegetation Index anomalies from Moderate Resolution Imaging Spectroradiometer (MODIS) data and Evapotranspiration anomalies from surface energy balance modeling. All of these satellite-based indices are being used to monitor vegetation condition, rainfall and land surface temperature. The weighted combination of these input parameters into one composite indicator takes into account the importance of the rainfall-based parameter (SPI). The composite drought index maps were generated during the growing seasons going back to 2003. These maps have been compared to both the historical, in situ precipitation data across Morocco and with the historical yield data across different provinces with information being available since 2000. The maps are disseminated monthly to several main stakeholders' groups including the Ministry of Agriculture and Department of Water in Morocco.