Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
56 result(s) for "Haislip, Joshua"
Sort by:
Skynet’s New Observing Mode: The Campaign Manager
Built in 2004, the Skynet robotic telescope network originally consisted of six 0.4 m telescopes located at the Cerro-Tololo Inter-American Observatory in the Chilean Andes. The network was designed to carry out simultaneous multi-wavelength observations of gamma-ray bursts (GRBs) when they are only tens of seconds old. To date, the network has been expanded to ≈20 telescopes, including a 20 m radio telescope, that span four continents and five countries. The Campaign Manager (CM) is a new observing mode that has been developed for Skynet. Available to all Skynet observers, the CM semi-autonomously and indefinitely scales and schedules exposures on the observer’s behalf while allowing for modification to scaling parameters in real time. The CM is useful for follow up to various transient phenomena including gravitational-wave events, GRB localizations, young supernovae, and eventually, sufficiently bright Argus Optical Array and Large Synoptic Survey Telescope events.
Optical Time-series Photometry of the Symbiotic Nova V1835 Aquilae
We present time-series CCD photometry in the BVRI passbands of the recently identified symbiotic nova V1835 Aquilae (NSV 11749) over an interval of 5.1 yr with 7–14 day cadence, observed during its quiescence. We find slow light variations with a range of ∼0.9 mag in V and ∼0.3 mag in I . Analysis of these data show strong periodicity at 419 ± 10 days, which we interpret to be the system’s orbital period. A dip in the otherwise-sinusoidal phased light curve suggests a weak ellipsoidal effect due to tidal distortion of the giant star, which in turn opens the possibility that V1835 Aql transfers some of its mass to the hot component via Roche lobe overflow rather than via a stellar wind. We also find evidence that V1835 Aql is an S-type symbiotic star, relatively free of circumstellar dust, and include it among the nuclear burning group of symbiotics. Finally, we provide photometry, periods, and light curve classifications for 22 variable stars in the field around V1835 Aql, about half of which are newly identified.
Building the Evryscope: Hardware Design and Performance
The Evryscope is a telescope array designed to open a new parameter space in optical astronomy, detecting short-timescale events across extremely large sky areas simultaneously. The system consists of a 780 MPix 22-camera array with an 8150 sq. deg. field of view, 13″ per pixel sampling, and the ability to detect objects down to m g ′ 16 in each 2-minute dark-sky exposure. The Evryscope, covering 18,400 sq. deg. with hours of high-cadence exposure time each night, is designed to find the rare events that require all-sky monitoring, including transiting exoplanets around exotic stars like white dwarfs and hot subdwarfs, stellar activity of all types within our galaxy, nearby supernovae, and other transient events such as gamma-ray bursts and gravitational-wave electromagnetic counterparts. The system averages 5000 images per night with ∼300,000 sources per image, and to date has taken over 3.0M images, totaling 250 TB of raw data. The resulting light curve database has light curves for 9.3M targets, averaging 32,600 epochs per target through 2018. This paper summarizes the hardware and performance of the Evryscope, including the lessons learned during telescope design, electronics design, a procedure for the precision polar alignment of mounts for Evryscope-like systems, robotic control and operations, and safety and performance-optimization systems. We measure the on-sky performance of the Evryscope, discuss its data analysis pipelines, and present some example variable star and eclipsing binary discoveries from the telescope. We also discuss new discoveries of very rare objects including two hot subdwarf eclipsing binaries with late M-dwarf secondaries (HW Vir systems), two white dwarf/hot subdwarf short-period binaries, and four hot subdwarf reflection binaries. We conclude with the status of our transit surveys, M-dwarf flare survey, and transient detection.
Skynet’s New Observing Mode
Built in 2004, the Skynet robotic telescope network originally consisted of six 0.4 m telescopes located at the Cerro-Tololo Inter-American Observatory in the Chilean Andes. The network was designed to carry out simultaneous multi-wavelength observations of gamma-ray bursts (GRBs) when they are only tens of seconds old. To date, the network has been expanded to ≈20 telescopes, including a 20 m radio telescope, that span four continents and five countries. The Campaign Manager (CM) is a new observing mode that has been developed for Skynet. Available to all Skynet observers, the CM semi-autonomously and indefinitely scales and schedules exposures on the observer’s behalf while allowing for modification to scaling parameters in real time. The CM is useful for follow up to various transient phenomena including gravitational-wave events, GRB localizations, young supernovae, and eventually, sufficiently bright Argus Optical Array and Large Synoptic Survey Telescope events.
Optical Time-series Photometry of the Symbiotic Nova V1835 Aquilae
We present time-series CCD photometry in the BVRI passbands of the recently identified symbiotic nova V1835 Aquilae (NSV 11749) over an interval of 5.1 yr with 7–14 day cadence, observed during its quiescence. We find slow light variations with a range of ∼0.9 mag in V and ∼0.3 mag in I. Analysis of these data show strong periodicity at 419 ± 10 days, which we interpret to be the system’s orbital period. A dip in the otherwise-sinusoidal phased light curve suggests a weak ellipsoidal effect due to tidal distortion of the giant star, which in turn opens the possibility that V1835 Aql transfers some of its mass to the hot component via Roche lobe overflow rather than via a stellar wind. We also find evidence that V1835 Aql is an S-type symbiotic star, relatively free of circumstellar dust, and include it among the nuclear burning group of symbiotics. Finally, we provide photometry, periods, and light curve classifications for 22 variable stars in the field around V1835 Aql, about half of which are newly identified.
Building the Evryscope
The Evryscope is a telescope array designed to open a new parameter space in optical astronomy, detecting short-timescale events across extremely large sky areas simultaneously. The system consists of a 780 MPix 22-camera array with an 8150 sq. deg. field of view, 13″ per pixel sampling, and the ability to detect objects down to m g ′ ≃ 16 in each 2-minute dark-sky exposure. The Evryscope, covering 18,400 sq. deg. with hours of high-cadence exposure time each night, is designed to find the rare events that require all-sky monitoring, including transiting exoplanets around exotic stars like white dwarfs and hot subdwarfs, stellar activity of all types within our galaxy, nearby supernovae, and other transient events such as gamma-ray bursts and gravitational-wave electromagnetic counterparts. The system averages 5000 images per night with ∼300,000 sources per image, and to date has taken over 3.0M images, totaling 250 TB of raw data. The resulting light curve database has light curves for 9.3M targets, averaging 32,600 epochs per target through 2018. This paper summarizes the hardware and performance of the Evryscope, including the lessons learned during telescope design, electronics design, a procedure for the precision polar alignment of mounts for Evryscope-like systems, robotic control and operations, and safety and performance-optimization systems. We measure the on-sky performance of the Evryscope, discuss its data analysis pipelines, and present some example variable star and eclipsing binary discoveries from the telescope. We also discuss new discoveries of very rare objects including two hot subdwarf eclipsing binaries with late M-dwarf secondaries (HWVir systems), two white dwarf/hot subdwarf short-period binaries, and four hot subdwarf reflection binaries. We conclude with the status of our transit surveys, M-dwarf flare survey, and transient detection.
Infant-phase reddening by surface Fe-peak elements in a normal type Ia supernova
Type Ia supernovae are thermonuclear explosions of white dwarf stars. They play a central role in the chemical evolution of the Universe and are an important measure of cosmological distances. However, outstanding questions remain about their origins. Despite extensive efforts to obtain natal information from their earliest signals, observations have thus far failed to identify how the majority of them explode. Here, we present infant-phase detections of SN 2018aoz from a very low brightness of −10.5 AB absolute magnitude, revealing a hitherto unseen plateau in the B band that results in a rapid redward colour evolution between 1.0 and 12.4 hours after the estimated epoch of first light. The missing B -band flux is best explained by line-blanket absorption from Fe-peak elements in the outer 1% of the ejected mass. The observed B  −  V colour evolution of the supernova also matches the prediction from an over-density of Fe-peak elements in the same outer 1% of the ejected mass, whereas bluer colours are expected from a purely monotonic distribution of Fe-peak elements. The presence of excess nucleosynthetic material in the extreme outer layers of the ejecta points to enhanced surface nuclear burning or extended subsonic mixing processes in some normal type Ia SN explosions. Very early observations of a type Ia supernova—from within one hour of explosion—show a red colour that develops and rapidly disappears. These data provide information on the initial explosion mechanism: surface nuclear burning on the white dwarf or extreme mixing of the nuclear burning process.
The Pulsar Science Collaboratory: Multi-Epoch Scintillation Studies of Pulsars
We report on findings from scintillation analyses using high-cadence observations of eight canonical pulsars with observing baselines ranging from one to three years. We obtain scintillation bandwidth and timescale measurements for all pulsars in our survey, scintillation arc curvature measurements for four, and detect multiple arcs for two. We find evidence of a previously undocumented scattering screen along the line of sight (LOS) to PSR J1645\\(-\\)0317, as well as evidence that a scattering screen along the LOS to PSR J2313\\(+\\)4253 may reside somewhere within the Milky Way's Orion-Cygnus arm. We report evidence of a significant change in the scintillation pattern in PSR J2022\\(+\\)5154 from the previous two decades of literature, wherein both the scintillation bandwidth and timescale decreased by an order of magnitude relative to earlier observations at the same frequencies, potentially as a result of a different screen dominating the observed scattering. By augmenting the results of previous studies, we find general agreement with estimations of scattering delays from pulsar observations and predictions by the NE2001 electron density model but not for the newest data we have collected, providing some evidence of changes in the ISM along various LOSs over the timespans considered. In a similar manner, we find additional evidence of a correlation between a pulsar's dispersion measure and the overall variability of its scattering delays over time. The plethora of interesting science obtained through these observations demonstrates the capabilities of the Green Bank Observatory's 20m telescope to contribute to pulsar-based studies of the interstellar medium.
Skynet's New Observing Mode: The Campaign Manager
Built in 2004, the Skynet robotic telescope network originally consisted of six 0.4 m telescopes located at the Cerro-Tololo Inter-American Observatory in the Chilean Andes. The network was designed to carry out simultaneous multi-wavelength observations of gamma-ray bursts (GRBs) when they are only tens of seconds old. To date, the network has been expanded to ~20 telescopes, including a 20 m radio telescope, that span four continents and five countries. The Campaign Manager (CM) is a new observing mode that has been developed for Skynet. Available to all Skynet observers, the CM semi-autonomously and indefinitely scales and schedules exposures on the observer's behalf while allowing for modification to scaling parameters in real time. The CM is useful for follow up to various transient phenomena including gravitational-wave events, GRB localizations, young supernovae, and eventually, sufficiently bright Argus Optical Array and Large Synoptic Survey Telescope events.
A Statistical Analysis of Crab Pulsar Giant Pulse Rates
A small number of pulsars are known to emit giant pulses, single pulses much brighter than average. Among these is PSR J0534+2200, also known as the Crab pulsar, a young pulsar with high giant pulse rates. Long-term monitoring of the Crab pulsar presents an excellent opportunity to perform statistical studies of its giant pulses and the processes affecting them, potentially providing insight into the behavior of other neutron stars that emit bright single pulses. Here, we present an analysis of a set of 24,985 Crab giant pulses obtained from 88 hours of daily observations at a center frequency of 1.55 GHz by the 20-meter telescope at the Green Bank Observatory, spread over 461 days. We study the effects of refractive scintillation at higher frequencies than previous studies and compare methods of correcting for this effect. We also search for deterministic patterns seen in other single-pulse sources, possible periodicities seen in several rotating radio transients and fast radio bursts, and clustering of giant pulses like that seen in the repeating fast radio burst FRB121102.