Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
58
result(s) for
"Halbach, Oliver von Bohlen und"
Sort by:
BDNF effects on dendritic spine morphology and hippocampal function
by
Viola von Bohlen und Halbach
,
Oliver von Bohlen und Halbach
in
Biological activity
,
Brain-derived neurotrophic factor
,
Dendritic plasticity
2018
Neurotrophins, including brain-derived neurotrophic factor (BDNF), are expressed in the hippocampus, as well as their precursors, the pro-neurotrophins. The neurotrophins signal through specific tyrosine kinase receptors and the low affinity receptor p75NTR. Moreover, the pro-neurotrophins are considered to be biologically active by signaling through specific receptors. The neurotrophins, especially BDNF, are involved in processes related to learning and memory. Furthermore, it is thought that BDNF also plays a crucial role in major depression. This points to a role of BDNF as a central regulator of neuronal plasticity within the postnatal hippocampus. Morphological correlates of neuronal plasticity are changes on the level of the dendritic spines and, at least in the dentate gyrus of the hippocampus, on the level of adult neurogenesis. Specific changes in dendritic spines as well as in adult hippocampal neurogenesis can be seen in the context of several forms of learning and memory, and it is known that depression is accompanied by declines in the rate of adult neurogenesis and in spine densities. The possible roles of BDNF in neuronal plasticity within the hippocampus are highlighted in this review by focusing on the morphological components of neuronal plasticity.
Journal Article
Deficiency in FTSJ1 Affects Neuronal Plasticity in the Hippocampal Formation of Mice
2022
The role of the tRNA methyltransferase FTSJ1 in the brain is largely unknown. We analyzed whether FTSJ1-deficient mice (KO) displayed altered neuronal plasticity. We explored open field behavior (10 KO mice (aged 22–25 weeks)) and 11 age-matched control littermates (WT) and examined mean layer thickness (7 KO; 6 WT) and dendritic spines (5 KO; 5 WT) in the hippocampal area CA1 and the dentate gyrus. Furthermore, long-term potentiation (LTP) within area CA1 was investigated (5 KO; 5 WT), and mass spectrometry (MS) using CA1 tissue (2 each) was performed. Compared to controls, KO mice showed a significant reduction in the mean thickness of apical CA1 layers. Dendritic spine densities were also altered in KO mice. Stable LTP could be induced in the CA1 area of KO mice and remained stable at for at least 1 h, although at a lower level as compared to WTs, while MS data indicated differential abundance of several proteins, which play a role in neuronal plasticity. FTSJ1 has an impact on neuronal plasticity in the murine hippocampal area CA1 at the morphological and physiological levels, which, in conjunction with comparable changes in other cortical areas, might accumulate in disturbed learning and memory functions.
Journal Article
Structural and functional consequences in the amygdala of leptin-deficient mice
by
Gebhardt, Christine
,
von Bohlen und Halbach, Oliver
,
Bracke, Alexander
in
Amygdala
,
Animal models
,
anxiety
2020
On the one hand, the emotional state can influence food intake and on the other hand, hunger can have an impact on the emotional state. Leptin, which is encoded by the ob gene, is involved in the energy homeostasis and plays a role in development of obesity. Mice deficient for leptin (ob/ob) are obese and display several behavioral alterations. It has been shown that ob/ob mice display striking changes in neuronal plasticity within the limbic system, e.g., hippocampal formation. We focus on alterations in ob/ob mice that can be related to alter processing in another part of the limbic system, the amygdala. ob/ob mice have a higher food consumption than age-matched controls, which might have an impact on the emotional state of these mice. Since the amygdala is involved in emotional processing, we analyze whether ob/ob mice display alterations in plasticity at the electrophysiological and structural level. No changes were seen in dendritic spine densities in the basolateral and lateral (LA) nucleus of the amygdala. Interestingly and in contrast to the hippocampus (Porter et al.
2013
), long-term potentiation in the LA was increased in ob/ob mice. Our results indicate that amygdalar and hippocampal synaptic plasticity are regulated in different ways by leptin deficiency in accordance with the different functions of these limbic structures in stress and anxiety.
Journal Article
Reduced Levels of Brain-Derived Neurotrophic Factor Affect Body Weight, Brain Weight and Behavior
by
Voigt, Matthias Wilhelm
,
von Bohlen und Halbach, Oliver
,
Haas, Jacqueline
in
Animal behavior
,
Animals
,
BDNF
2024
Neurotrophins, which belong to the family of growth factors, not only play crucial roles during development but are also involved in many processes in the postnatal brain. One representative of neurotrophins is brain-derived neurotrophic factor (BDNF). BDNF plays a role in the regulation of body weight and neuronal plasticity and is, therefore, also involved in processes associated with learning and memory formation. Many of the studies on BDNF have been carried out using BDNF-deficient mice. Unfortunately, homozygous deletion of BDNF is lethal in the early postnatal stage, so heterozygous BDNF-deficient mice are often studied. Another possibility is the use of conditional BDNF-deficient mice in which the expression of BDNF is strongly downregulated in some brain cells, for example, in the neurons of the central nervous system, but the expression of BDNF in other cells in the brain is unchanged. To further reduce BDNF expression, we crossed heterozygous BDNF-deficient mice with mice carrying a deletion of BDNF in neurofilament L-positive neurons. These offspring are viable, and the animals with a strong reduction in BDNF in the brain show a strongly increased body weight, which is accompanied by a reduction in brain weight. In addition, these animals show behavioral abnormalities, particularly with regard to locomotion.
Journal Article
Expression of Slc35f1 in the murine brain
by
Artelt, Nadine
,
Oliver von Bohlen und Halbach
,
Farenholtz, Jacob
in
Amygdala
,
Basal ganglia
,
Endoplasmic reticulum
2019
The solute carrier (SLC) group of membrane transport proteins includes about 400 members organized into more than 50 families. The SLC family that comprises nucleoside-sugar transporters is referred to as SLC35. One of the members of this family is SLC35F1. The function of SLC35F1 is still unknown; however, recent studies demonstrated that SLC35F1 mRNA is highly expressed in the brain and in the kidney. Therefore, we examine the distribution of Slc35f1 protein in the murine forebrain using immunohistochemistry. We could demonstrate that Slc35f1 is highly expressed in the adult mouse brain in a variety of different brain structures, including the cortex, hippocampus, amygdala, thalamus, basal ganglia, and hypothalamus. To examine the possible roles of Slc35f1 and its subcellular localization, we used an in vitro glioblastoma cell line expressing Slc35f1. Co-labeling experiments were performed to reveal the subcellular localization of Slc35f1. Our results indicate that Slc35f1 neither co-localizes with markers for the Golgi apparatus nor with markers for the endoplasmic reticulum. Time-lapse microscopy of living cells revealed that Slc35f1-positive structures are highly dynamic and resemble vesicles. Using super-resolution microscopy, these Slc35f1-positive spots clearly co-localize with the recycling endosome marker Rab11.
Journal Article
Forebrain-specific, conditional silencing of Staufen2 alters synaptic plasticity, learning, and memory in rats
by
Berger, Stefan M.
,
Schönig, Kai
,
Fernández-Lamo, Iván
in
adults
,
Animal Genetics and Genomics
,
animal models
2017
Background
Dendritic messenger RNA (mRNA) localization and subsequent local translation in dendrites critically contributes to synaptic plasticity and learning and memory. Little is known, however, about the contribution of RNA-binding proteins (RBPs) to these processes in vivo.
Results
To delineate the role of the double-stranded RBP Staufen2 (Stau2), we generate a transgenic rat model, in which Stau2 expression is conditionally silenced by Cre-inducible expression of a microRNA (miRNA) targeting Stau2 mRNA in adult forebrain neurons. Known physiological mRNA targets for Stau2, such as
RhoA
,
Complexin 1
, and
Rgs4
mRNAs, are found to be dysregulated in brains of Stau2-deficient rats. In vivo electrophysiological recordings reveal synaptic strengthening upon stimulation, showing a shift in the frequency-response function of hippocampal synaptic plasticity to favor long-term potentiation and impair long-term depression in Stau2-deficient rats. These observations are accompanied by deficits in hippocampal spatial working memory, spatial novelty detection, and in tasks investigating associative learning and memory.
Conclusions
Together, these experiments reveal a critical contribution of Stau2 to various forms of synaptic plasticity including spatial working memory and cognitive management of new environmental information. These findings might contribute to the development of treatments for conditions associated with learning and memory deficits.
Journal Article
Morphological and behavioral characterization of adult mice deficient for SrGAP3
by
van Diepen, Laura
,
Lotze, Martin
,
von Bohlen und Halbach, Oliver
in
adulthood
,
adults
,
Aging - metabolism
2016
SrGAP3 belongs to the family of Rho GTPase proteins. These proteins are thought to play essential roles in development and in the plasticity of the nervous system. SrGAP3-deficient mice have recently been created and approximately 10 % of these mice developed a hydrocephalus and died shortly after birth. The others survived into adulthood, but displayed neuroanatomical alteration, including increased ventricular size. We now show that SrGAP3-deficient mice display increased brain weight together with increased hippocampal volume. This increase was accompanied by an increase of the thickness of the stratum oriens of area CA1 as well as of the thickness of the molecular layer of the dentate gyrus (DG). Concerning hippocampal adult neurogenesis, we observed no significant change in the number of proliferating cells. The density of doublecortin-positive cells also did not vary between SrGAP3-deficient mice and controls. By analyzing Golgi-impregnated material, we found that, in SrGAP3-deficient mice, the morphology and number of dendritic spines was not altered in the DG. Likewise, a Sholl-analysis revealed no significant changes concerning dendritic complexity as compared to controls. Despite the distinct morphological alterations in the hippocampus, SrGAP3-deficient mice were relatively inconspicuous in their behavior, not only in the open-field, nest building but also in the Morris water-maze. However, the SrGAP3-deficient mice showed little to no interest in burying marbles; a behavior that is seen in some animal models related to autism, supporting the view that SrGAP3 plays a role in neurodevelopmental disorders.
Journal Article
SrGAP3 knockout mice display enlarged lateral ventricles and specific cilia disturbances of ependymal cells in the third ventricle
2015
In several mouse models of mental retardation, ventricular enlargements have been observed. Mutation in the SrGAP3 gene residing on chromosome 3p25 has previously been associated with intellectual disability in humans. In addition, SrGAP3 is related to Rho-GAPs signaling pathways, which play essential roles in the development and plasticity of the nervous system. About 10 % of postnatal homozygous SrGAP3-deficient mice die due to hydrocephalus, whereas the remaining mice survive into adulthood but display enlarged ventricles. We analyze the ventricular enlargement of these mice by performing a post-mortem MRI approach. We found a more than 15-fold enlargement of the lateral ventricles of homozygous SrGAP3-deficient mice. Moreover, we demonstrate that this phenotype was not accompanied by a stenosis of the aqueduct. Instead, SrGAP3 knockout mice displayed reduced densities of cilia of ependymal cells in These third ventricle compared to age-matched controls. This results indicate that the ventricular enlargement may be due to ciliopathy.
Journal Article
The Neurotrophin System in the Postnatal Brain—An Introduction
2024
Neurotrophins can bind to and signal through specific receptors that belong to the class of the Trk family of tyrosine protein kinase receptors. In addition, they can bind and signal through a low-affinity receptor, termed p75NTR. Neurotrophins play a crucial role in the development, maintenance, and function of the nervous system in vertebrates, but they also have important functions in the mature nervous system. In particular, they are involved in synaptic and neuronal plasticity. Thus, it is not surprisingly that they are involved in learning, memory and cognition and that disturbance in the neurotrophin system can contribute to psychiatric diseases. The neurotrophin system is sensitive to aging and changes in the expression levels correlate with age-related changes in brain functions. Several polymorphisms in genes coding for the different neurotrophins or neurotrophin receptors have been reported. Based on the importance of the neurotrophins for the central nervous system, it is not surprisingly that several of these polymorphisms are associated with psychiatric diseases. In this review, we will shed light on the functions of neurotrophins in the postnatal brain, especially in processes that are involved in synaptic and neuronal plasticity.
Journal Article
A patient-specific induced pluripotent stem cell model for West syndrome caused by ST3GAL3 deficiency
by
Buettner, Falk F R
,
Oliver von Bohlen und Halbach
,
Schambach, Axel
in
Cell adhesion
,
Cognitive ability
,
Epilepsy
2018
ST3GAL3 encodes the Golgi enzyme beta-galactoside-alpha-2,3-sialyltransferase-III that in humans forms, among others, the sialyl Lewis a (sLea) epitope on proteins. Functionally deleterious variants in this gene were previously identified in patients with either non-syndromic or syndromic intellectual disability such as West syndrome, an age-dependent epileptic encephalopathic syndrome associated with developmental arrest or regression. The aim of this study was to further elucidate the molecular and cellular mechanisms causing West syndrome by lack of ST3GAL3 function. For this purpose we generated induced pluripotent stem cell (iPSC) lines from fibroblasts obtained from a patient with West syndrome, carrying a variant in exon 12 (c.958G>C, p.(Ala320Pro)) of ST3GAL3, and a healthy sibling, using lentiviral reprogramming. iPSCs and cortical neurons derived thereof were analysed by lectin blots, mRNA sequencing, adherence assays, and FACS. While no significant difference was observed at stem cell or fibroblast level between patient and control cells, patient-derived cortical neurons displayed an altered lectin blot staining pattern, enhanced adherence to a poly-l-ornithine/laminin-coated surface and decreased levels of neurons expressing T-box transcription factor brain 1. Our results suggest that changes in the sialylation pattern on the surface of specific neuronal cell types affect adhesive interactions during development, which in turn may cause subtle changes in tissue composition that could result in the occurrence of epilepsy and might impair neural development to an extent that is detrimental to the development and maintenance of normal cognitive functions.
Journal Article