Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
21 result(s) for "Hallingbäck, Henrik R."
Sort by:
Preselection of QTL markers enhances accuracy of genomic selection in Norway spruce
Genomic prediction (GP) or genomic selection is a method to predict the accumulative effect of all quantitative trait loci (QTLs) in a population by estimating the realized genomic relationships between the individuals and by capturing the linkage disequilibrium between markers and QTLs. Thus, marker preselection is considered a promising method to capture Mendelian segregation effects. Using QTLs detected in a genome-wide association study (GWAS) may improve GP. Here, we performed GWAS and GP in a population with 904 clones from 32 full-sib families using a newly developed 50 k SNP Norway spruce array. Through GWAS we identified 41 SNPs associated with budburst stage (BB) and the largest effect association explained 5.1% of the phenotypic variation (PVE). For the other five traits such as growth and wood quality traits, only 2 – 13 associations were observed and the PVE of the strongest effects ranged from 1.2% to 2.0%. GP using approximately 100 preselected SNPs, based on the smallest p -values from GWAS showed the greatest predictive ability (PA) for the trait BB. For the other traits, a preselection of 2000–4000 SNPs, was found to offer the best model fit according to the Akaike information criterion being minimized. But PA-magnitudes from GP using such selections were still similar to that of GP using all markers. Analyses on both real-life and simulated data also showed that the inclusion of a large QTL SNP in the model as a fixed effect could improve PA and accuracy of GP provided that the PVE of the QTL was ≥ 2.5%.
Cross-generational genomic prediction of Norway spruce (Picea abies) wood properties: an evaluation using independent validation
Background The evaluation of genomic selection (GS) efficiency in forestry has primarily relied on cross-validation schemes that split the same population within a single generation for both training and validation. While useful, this approach may not be reliable for multigenerational breeding. To our knowledge, this is the first study to assess genomic prediction in Norway spruce using a large dataset spanning two generations in two environments. We trained pedigree-based (ABLUP) and marker-based (GBLUP) prediction models under three approaches: forward prediction, backward prediction, and across-environment prediction. The models were evaluated for ring-width, solid-wood and tracheid characteristics, using ~ 6,000 phenotyped and ~ 2,500 genotyped individual. Predictive ability (PA) and prediction accuracy (ACC) were estimated using an independent validation method, ensuring no individuals were shared between training and validation datasets. To assess the trade-off between comprehensive radial history and practical direct methods, we compared GBLUP models trained with cumulative area-weighted density (AWE-GBLUP) and single annual-ring density (SAD-GBLUP) from mother plus-trees. These models were validated using early and mature-stage progeny density measurements across two trials. Results Despite the smaller number of individuals used in the GBLUP models, both PA and ACC were generally comparable to those of the ABLUP model, particularly for cross-environment predictions. Overall, forward and backward predictions were significantly higher for density-related and tracheid properties, suggesting that across-generation predictions are feasible for wood properties but may be challenging for growth and low-heritability traits. Notably, SAD-GBLUP provided comparable prediction accuracies to AWE-GBLUP, supporting the use of more practical and cost-effective phenotyping methods in operational breeding programs. Conclusions Our findings highlight the need for context-specific models to improve the accuracy and reliability of genomic prediction in forest tree breeding. Future efforts might aim to expand training populations, incorporate non-additive genetic effects, and validate model performance across cambial ages while accounting for climatic variability during the corresponding growth years. Overall, this study offers a valuable foundation for implementing GS in Norway spruce breeding programs.
Genetic variation of biomass recalcitrance in a natural Salix viminalis (L.) population
Background Salix spp. are high-productivity crops potentially used for lignocellulosic biofuels such as bioethanol. In general, pretreatment is needed to facilitate the enzymatic depolymerization process. Biomass resistance to degradation, i.e., biomass recalcitrance, is a trait which can be assessed by measuring the sugar released after combined pretreatment and enzymatic hydrolysis. We have examined genetic parameters of enzymatic sugar release and other traits related to biorefinery use in a population of 286 natural Salix viminalis clones. Furthermore, we have evaluated phenotypic and genetic correlations between these traits and performed a genomewide association mapping analysis using a set of 19,411 markers. Results Sugar release (glucose and xylose) after pretreatment and enzymatic saccharification proved highly variable with large genetic and phenotypic variations, and chip heritability estimates (h2) of 0.23–0.29. Lignin syringyl/guaiacyl (S/G) ratio and wood density were the most heritable traits (h2 = 0.42 and 0.59, respectively). Sugar release traits were positively correlated, phenotypically and genetically, with biomass yield and lignin S/G ratio. Association mapping revealed seven marker–trait associations below a suggestive significance threshold, including one marker associated with glucose release. Conclusions We identified lignin S/G ratio and shoot diameter as heritable traits that could be relatively easily evaluated by breeders, making them suitable proxy traits for developing low-recalcitrance varieties. One marker below the suggestive threshold for marker associations was identified for sugar release, meriting further investigation while also highlighting the difficulties in employing genomewide association mapping for complex traits.
Implications of accounting for marker-based population structure in the quantitative genetic evaluation of genetic parameters related to growth and wood properties in Norway spruce
Background Forest geneticists typically use provenances to account for population differences in their improvement schemes; however, the historical records of the imported materials might not be very precise or well-aligned with the genetic clusters derived from advanced molecular techniques. The main objective of this study was to assess the impact of marker-based population structure on genetic parameter estimates related to growth and wood properties and their trade-offs in Norway spruce, by either incorporating it as a fixed effect (model-B) or excluding it entirely from the analysis (model-A). Results Our results indicate that models incorporating population structure significantly reduce estimates of additive genetic variance, resulting in substantial reduction of narrow-sense heritability. However, these models considerably improve prediction accuracies. This was particularly significant for growth and solid-wood properties, which showed to have the highest population genetic differentiation (Q ST ) among the studied traits. Additionally, although the pattern of correlations remained similar across the models, their magnitude was slightly lower for models that included population structure as a fixed effect. This suggests that selection, consistently performed within populations, might be less affected by unfavourable genetic correlations compared to mass selection conducted without pedigree restrictions. Conclusion We conclude that the results of models properly accounting for population structure are more accurate and less biased compared to those neglecting this effect. This might have practical implications for breeders and forest managers where, decisions based on imprecise selections can pose a high risk to economic efficiency.
Association mapping in Salix viminalis L. (Salicaceae) – identification of candidate genes associated with growth and phenology
Willow species (Salix) are important as short‐rotation biomass crops for bioenergy, which creates a demand for faster genetic improvement and breeding through deployment of molecular marker‐assisted selection (MAS). To find markers associated with important adaptive traits, such as growth and phenology, for use in MAS, we genetically dissected the trait variation of a Salix viminalis (L.) population of 323 accessions. The accessions were sampled throughout northern Europe and were established at two field sites in Pustnäs, Sweden, and at Woburn, UK, offering the opportunity to assess the impact of genotype‐by‐environment interactions (G × E) on trait–marker associations. Field measurements were recorded for growth and phenology traits. The accessions were genotyped using 1536 SNP markers developed from phenology candidate genes and from genes previously observed to be differentially expressed in contrasting environments. Association mapping between 1233 of these SNPs and the measured traits was performed taking into account population structure and threshold selection bias. At a false discovery rate (FDR) of 0.2, 29 SNPs were associated with bud burst, leaf senescence, number of shoots or shoot diameter. The percentage of accession variation (Radj2) explained by these associations ranged from 0.3% to 4.4%, suggesting that the studied traits are controlled by many loci of limited individual impact. Despite this, a SNP in the EARLY FLOWERING 3 gene was repeatedly associated (FDR < 0.2) with bud burst. The rare homozygous genotype exhibited 0.4–1.0 lower bud burst scores than the other genotype classes on a five‐grade scale. Consequently, this marker could be promising for use in MAS and the gene deserves further study. Otherwise, associations were less consistent across sites, likely due to their small Radj2 estimates and to considerable G × E interactions indicated by multivariate association analyses and modest trait accession correlations across sites (0.32–0.61).
Allelic incompatibility can explain female biased sex ratios in dioecious plants
Background Biased sex ratios are common among dioecious plant species despite the theoretical prediction of selective advantage of even sex ratios. Albeit the high prevalence of deviations from even sex ratios, the genetic causes to sex biases are rarely known outside of a few model species. Here we present a mechanism underlying the female biased sex ratio in the dioecious willow species Salix viminalis . Results We compared the segregation pattern of genome-wide single nucleotide polymorphism markers in two contrasting bi-parental pedigree populations, the S3 with even sex ratio and the S5 with a female biased sex ratio. With the segregation analysis and comparison between the two populations, we were able to demonstrate that sex determination and sex ratio distortion are controlled by different genetic mechanisms. We furthermore located the sex ratio distorter locus to a Z/W-gametologous region on chromosome 15, which was in close linkage with the sex determination locus. Interestingly, all males in the population with biased sex ratio have in this sex ratio distorter locus the same genotype, meaning that males with the Z 1 /Z 3 -genotype were missing from the population, thereby creating the 2:1 female biased sex ratio. Conclusions We attribute the absence of Z 1 /Z 3 males to an allelic incompatibility between maternally and paternally inherited alleles in this sex ratio distorter locus. Due to the tight linkage with the sex determination locus only male individuals are purged from the population at an early age, presumably before or during seed development. We showed that such allelic incompatibility could be stably maintained over evolutionary times through a system of overdominant or pseudooverdominant alleles. Thus, it is possible that the same mechanism generates the female biased sex ratio in natural willow populations.
Genome-wide association mapping uncovers sex-associated copy number variation markers and female hemizygous regions on the W chromosome in Salix viminalis
Background Sex chromosomes are in some species largely undifferentiated (homomorphic) with restricted sex determination regions. Homomorphic but different sex chromosomes are found in the closely related genera Populus and Salix indicating flexible sex determination systems, ideal for studies of processes involved in sex chromosome evolution. We have performed genome-wide association studies of sex and analysed sex chromosomes in a population of 265 wild collected Salix viminalis accessions and studied the sex determining locus. Results A total of 19,592 markers were used in association analyses using both Fisher’s exact tests and a single-marker mixed linear model, which resulted in 48 and 41 sex-associated (SA) markers respectively. Across all 48 SA markers, females were much more often heterozygous than males, which is expected if females were the heterogametic sex. The majority of the SA markers were, based on positions in the S. purpurea genome, located on chromosome 15, previously demonstrated to be the sex chromosome. Interestingly, when mapping the genotyping-by-sequencing sequence tag harbouring the two SA markers with the highest significance to the S. viminalis genomic scaffolds, five regions of very high similarity were found: three on a scaffold that represents a part of chromosome 15, one on a scaffold that represents a part of chromosome 9 and one on a scaffold not anchored to the genome. Based on segregation differences of the alleles at the two marker positions and on differences in PCR amplification between females and males we conclude that females had multiple copies of this DNA fragment (chromosome 9 and 15), whereas males only had one (chromosome 9). We therefore postulate that the female specific sequences have been copied from chromosome 9 and inserted on chromosome 15, subsequently developing into a hemizygous W chromosome linked region. Conclusions Our results support that sex determination in S. viminalis is controlled by one locus on chromosome 15. The segregation patterns observed at the SA markers furthermore confirm that S. viminalis females are the heterogametic sex. We also identified a translocation from chromosome 9 to the W chromosome.
Estimation of number and size of QTL effects in forest tree traits
Mapping the genetic architecture of forest tree traits is important in order to understand the evolutionary forces that have shaped these traits and to facilitate the development of genomic-based breeding strategies. We examined the number, size, and distribution of allelic effects influencing eight types of traits using 30 published mapping studies (linkage and association mapping) in forest trees. The sizes of allelic effects, measured as the phenotypic variance explained, generally showed a severely right-skewed distribution. We estimated the numbers of underlying causal effects ( n qtl ) for different trait categories by improving a method previously developed by Otto and Jones (Genetics 156:2093–2107, 2000 ). Estimates of n qtl based on association mapping studies were generally higher (median at 643) than those based on linkage mapping (median at 33). Comparisons with simulated linkage and association mapping data suggested that the lower n qtl estimates for the linkage mapping studies could partly be explained by fewer causal loci segregating within the full-sib family populations normally used, but also by the cosegregation of causal loci due to limited recombination. Disease resistance estimates based on linkage mapping studies had the lowest median of four underlying effects, while growth traits based on association mapping had about 580 effects. Theoretically, the capture of 50% of the genetic variation would thus require a population size of about 200 for disease resistance in linkage mapping, while growth traits in association mapping would require about 25,000. The adequacy and reliability of the improved method was successfully verified by applying it to the simulated data.
Genetic Improvement of Sawn-Board Stiffness and Strength in Scots Pine (Pinus sylvestris L.)
Given an overall aim of improving Scots pine structural wood quality by selective tree breeding, we investigated the potential of non-destructive acoustic sensing tools to accurately predict wood stiffness (modulus of elasticity, MOE) and strength (modulus of rupture, MOR) of sawn boards. Non-destructive measurements of wood density (DEN), acoustic velocity (VEL) and MOE were carried out at different stages of wood processing chain (standing trees, felled logs and sawn boards), whilst destructively measured stiffness and strength served as benchmark traits. All acoustic based MOE and VEL estimates proved to be good proxies (rA > 0.65) for sawn-board stiffness while MOETREE, VELHIT and resistograph wood density (DENRES) measured on standing trees and MOELOG and VELFAK measured on felled logs well reflected board strength. Individual-tree narrow-sense heritability ( h i 2 ) for VEL, MOE and MOR were weak (0.05–0.26) but were substantially stronger for wood density (0.34–0.40). Moreover, additive genetic coefficients of variation for MOE and MOR were in the range from 5.4% to 9.1%, offering potential targets for exploitation by selective breeding. Consequently, selective breeding based on MOETREE, DENRES or stem straightness (STR) could improve several structural wood traits simultaneously.