Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
110 result(s) for "Haluzik, Martin"
Sort by:
Pharmacotherapy as an Augmentation to Bariatric Surgery for Obesity
A global obesity pandemic is one of the most significant health threats worldwide owing to its close association with numerous comorbidities such as type 2 diabetes mellitus, arterial hypertension, dyslipidemia, heart failure, cancer and many others. Obesity and its comorbidities lead to a higher rate of cardiovascular complications, heart failure and increased cardiovascular and overall mortality. Bariatric surgery is at present the most potent therapy for obesity, inducing a significant weight loss in the majority of patients. In the long-term, a substantial proportion of patients after bariatric surgery experience a gradual weight regain that may, in some, reach up to a presurgical body weight. As a result, anti-obesity pharmacotherapy may be needed in some patients after bariatric surgery to prevent the weight regain or to further potentiate weight loss. This article provides an overview of the use of anti-obesity medications as an augmentation to bariatric surgery for obesity. Despite relatively limited published data, it can be concluded that anti-obesity medication can serve as an effective adjunct therapy to bariatric surgery to help boost post-bariatric weight loss or prevent weight regain.
Pharmacological Treatment of Obesity in Older Adults
Obesity is a complex health issue with growing prevalence worldwide. It is also becoming more prevalent in the population of older adults (i.e., 65 years of age and older), affecting frequency and severity as well as other comorbidities, quality of life and consequently, life expectancy. In this article we review currently available data on pharmacotherapy of obesity in the population of older adults and its role in obesity management. Even though there is growing evidence, in particular in the general population, of favourable efficacy and safety profiles of glucagon-like peptide-1 (GLP-1) receptor agonists liraglutide and semaglutide, and recently dual GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) agonist tirzepatide, concise guidelines for older adults are not available to this day. We further discuss specific approaches to frequently represented phenotype of obesity in older adults, in particular sarcopenic obesity and rationale when to treat and how. In older adults with obesity there is a need for more drug trials focusing not only on weight loss, but also on geriatric endpoints including muscle mass preservation, bone quality and favourable fat distribution changes to get enough data for evidence-based recommendation on obesity treatment in this growing sub-population.
Mitochondrially targeted tamoxifen alleviates markers of obesity and type 2 diabetes mellitus in mice
Type 2 diabetes mellitus represents a major health problem with increasing prevalence worldwide. Limited efficacy of current therapies has prompted a search for novel therapeutic options. Here we show that treatment of pre-diabetic mice with mitochondrially targeted tamoxifen, a potential anti-cancer agent with senolytic activity, improves glucose tolerance and reduces body weight with most pronounced reduction of visceral adipose tissue due to reduced food intake, suppressed adipogenesis and elimination of senescent cells. Glucose-lowering effect of mitochondrially targeted tamoxifen is linked to improvement of type 2 diabetes mellitus-related hormones profile and is accompanied by reduced lipid accumulation in liver. Lower senescent cell burden in various tissues, as well as its inhibitory effect on pre-adipocyte differentiation, results in lower level of circulating inflammatory mediators that typically enhance metabolic dysfunction. Targeting senescence with mitochodrially targeted tamoxifen thus represents an approach to the treatment of type 2 diabetes mellitus and its related comorbidities, promising a complex impact on senescence-related pathologies in aging population of patients with type 2 diabetes mellitus with potential translation into the clinic. Senescent cells play a role in pathogenesis of diabetes, and senolytic agents can improve obesity- and diabetes-related pathologies. Here the authors report that mitochondrially targeted tamoxifen, a potential anti-cancer agent with senolytic activity, alleviates symptoms of obesity and prediabetes in mice, potentially via reduction of food intake and elimination of senescent cells.
Use of Non-Invasive Parameters of Non-Alcoholic Steatohepatitis and Liver Fibrosis in Daily Practice - An Exploratory Case-Control Study
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of a metabolic syndrome. To date, liver biopsy has been the gold standard used to differentiate between simple steatosis and steatohepatitis/fibrosis. Our aim was to compare the relevance of serum non-invasive parameters and scoring systems in the staging of liver fibrosis and non-alcoholic steatohepatitis (NASH) in patients with NAFLD. A total of 112 consecutive patients diagnosed with NAFLD were included. A liver biopsy was performed on 56 patients. The Kleiner score was used for the staging and grading of the histology. Non-invasive parameters for fibrosis (hyaluronic acid; AST/ALT; fibrosis scoring indexes OELF, ELF, BARD score, APRI, NAFLD fibrosis score); and inflammation (M30 and M65 cytokeratin-18 fragments) were measured and calculated. The same analyses were performed in 56 patients diagnosed with NAFLD, who were not indicated for liver biopsy. Based on the liver histology, NASH was diagnosed in 38 patients; simple steatosis in 18 patients. A cut-off value of 750 U/L of serum M65 discriminated patients with and without NASH with a 80% sensitivity and 82% specificity (95% CI:57-95). Fibrosis stage F0-F2 was present in 39 patients; F3-F4 in 17 patients. Serum concentrations of hyaluronic acid were higher in patients with advanced fibrosis (p<0.01); a cut-off value of 25 µg/l discriminated patients with F3-F4 with a 90% sensitivity and 84% specificity from those with F0-F2 (95% CI:59-99). When applying the non-invasive criteria to those patients without a liver biopsy, NASH could only be diagnosed in 16%; however, advanced fibrosis could be diagnosed in 35% of them. In patients with NAFLD, non-invasive serum parameters with a high accuracy can differentiate those patients with NASH and/or advanced fibrosis from those with simple steatosis. A substantial portion of those patients not indicated for liver biopsy might have undiagnosed advanced fibrosis.
Subclinical Inflammation and Adipose Tissue Lymphocytes in Pregnant Females With Gestational Diabetes Mellitus
Gestational diabetes mellitus (GDM) is accompanied by subclinical inflammation; however, little is known about local inflammation in adipose tissue and placenta. To analyze systemic and local subclinical inflammation and adipose tissue lymphocyte content and phenotype in pregnant women with and without GDM. Observational study. Academic hospital. Twenty-one pregnant women with GDM (GDM group), 16 pregnant women without GDM (non-GDM group) and 15 nonpregnant control women (N group). Serum samples taken at 28 to 32 (visit 1 [V1]) and 36 to 38 (V2) gestational weeks and 6 to 12 months after delivery (V3) in the GDM and non-GDM group and before elective gynecological surgery in the N group. Subcutaneous (SAT) and visceral adipose tissue (VAT) obtained during cesarean delivery or surgery. Serum levels and adipose tissue expression of proinflammatory cytokines, adipose tissue lymphocyte content and phenotype (for a subset of GDM and non-GDM subjects). Accented proinflammatory state in GDM was documented by increased circulating tumor necrosis factor-α (TNF-α) levels. In both groups of pregnant females total lymphocytes were higher in VAT compared to SAT. In GDM subjects B cells and NKT cells were higher in SAT compared to VAT and T helper cells were increased relative to SAT of non-GDM group, while no intercompartmental adipose tissue differences were seen in non-GDM women. Pregnant females had higher total lymphocyte count in VAT relative to SAT regardless of GDM. In addition to increased systemic subclinical inflammation, GDM was associated with significant differences in lymphocyte composition between subcutaneous and visceral adipose tissue depots.
Sodium-glucose cotransporter 2 inhibitors induce anti-inflammatory and anti-ferroptotic shift in epicardial adipose tissue of subjects with severe heart failure
Background Sodium-glucose cotransporter 2 inhibitors (SGLT-2i) are glucose-lowering agents used for the treatment of type 2 diabetes mellitus, which also improve heart failure and decrease the risk of cardiovascular complications. Epicardial adipose tissue (EAT) dysfunction was suggested to contribute to the development of heart failure. We aimed to elucidate a possible role of changes in EAT metabolic and inflammatory profile in the beneficial cardioprotective effects of SGLT-2i in subjects with severe heart failure. Methods 26 subjects with severe heart failure, with reduced ejection fraction, treated with SGLT-2i versus 26 subjects without treatment, matched for age (54.0 ± 2.1 vs. 55.3 ± 2.1 years, n.s.), body mass index (27.8 ± 0.9 vs. 28.8 ± 1.0 kg/m 2 , n.s.) and left ventricular ejection fraction (20.7 ± 0.5 vs. 23.2 ± 1.7%, n.s.), who were scheduled for heart transplantation or mechanical support implantation, were included in the study. A complex metabolomic and gene expression analysis of EAT obtained during surgery was performed. Results SGLT-2i ameliorated inflammation, as evidenced by the improved gene expression profile of pro-inflammatory genes in adipose tissue and decreased infiltration of immune cells into EAT. Enrichment of ether lipids with oleic acid noted on metabolomic analysis suggests a reduced disposition to ferroptosis, potentially further contributing to decreased oxidative stress in EAT of SGLT-2i treated subjects. Conclusions Our results show decreased inflammation in EAT of patients with severe heart failure treated by SGLT-2i, as compared to patients with heart failure without this therapy. Modulation of EAT inflammatory and metabolic status could represent a novel mechanism behind SGLT-2i-associated cardioprotective effects in patients with heart failure.
Dysregulation of epicardial adipose tissue in cachexia due to heart failure: the role of natriuretic peptides and cardiolipin
Background Cachexia worsens long‐term prognosis of patients with heart failure (HF). Effective treatment of cachexia is missing. We seek to characterize mechanisms of cachexia in adipose tissue, which could serve as novel targets for the treatment. Methods The study was conducted in advanced HF patients (n = 52; 83% male patients) undergoing heart transplantation. Patients with ≥7.5% non‐intentional body weight (BW) loss during the last 6 months were rated cachectic. Clinical characteristics and circulating markers were compared between cachectic (n = 17) and the remaining, BW‐stable patients. In epicardial adipose tissue (EAT), expression of selected genes was evaluated, and a combined metabolomic/lipidomic analysis was performed to assess (i) the role of adipose tissue metabolism in the development of cachexia and (ii) potential impact of cachexia‐associated changes on EAT‐myocardium environment. Results Cachectic vs. BW‐stable patients had higher plasma levels of natriuretic peptide B (BNP; 2007 ± 1229 vs. 1411 ± 1272 pg/mL; P = 0.010) and lower EAT thickness (2.1 ± 0.8 vs. 2.9 ± 1.4 mm; P = 0.010), and they were treated with ~2.5‐fold lower dose of both β‐blockers and angiotensin‐converting enzyme inhibitors or angiotensin receptor blockers (ACE/ARB‐inhibitors). The overall pattern of EAT gene expression suggested simultaneous activation of lipolysis and lipogenesis in cachexia. Lower ratio between expression levels of natriuretic peptide receptors C and A was observed in cachectic vs. BW‐stable patients (0.47 vs. 1.30), supporting activation of EAT lipolysis by natriuretic peptides. Fundamental differences in metabolome/lipidome between BW‐stable and cachectic patients were found. Mitochondrial phospholipid cardiolipin (CL), specifically the least abundant CL 70:6 species (containing C16:1, C18:1, and C18:2 acyls), was the most discriminating analyte (partial least squares discriminant analysis; variable importance in projection score = 4). Its EAT levels were higher in cachectic as compared with BW‐stable patients and correlated with the degree of BW loss during the last 6 months (r = −0.94; P = 0.036). Conclusions Our results suggest that (i) BNP signalling contributes to changes in EAT metabolism in cardiac cachexia and (ii) maintenance of stable BW and ‘healthy’ EAT‐myocardium microenvironment depends on the ability to tolerate higher doses of both ACE/ARB inhibitors and β‐adrenergic blockers. In line with preclinical studies, we show for the first time in humans the association of cachexia with increased adipose tissue levels of CL. Specifically, CL 70:6 could precipitate wasting of adipose tissue, and thus, it could represent a therapeutic target to ameliorate cachexia.
The effect of dicarbonyl stress on the development of kidney dysfunction in metabolic syndrome – a transcriptomic and proteomic approach
Background and aims Dicarbonyl stress plays an important role in the pathogenesis of microvascular complications that precede the formation of advanced glycation end products, and contributes to the development of renal dysfunction. In renal cells, toxic metabolites like methylglyoxal lead to mitochondrial dysfunction and protein structure modifications. In our study, we investigated the effect of methylglyoxal on metabolic, transcriptomic, metabolomic and proteomic profiles in the context of the development of kidney impairment in the model of metabolic syndrome. Materials and methods Dicarbonyl stress was induced by intragastric administration of methylglyoxal (0.5 mg/kg bw for 4 weeks) in a strain of hereditary hypertriglyceridaemic rats with insulin resistance and fatty liver. Results Methylglyoxal administration aggravated glucose intolerance (AUC 0–120 p  < 0.05), and increased plasma glucose ( p  < 0.01) and insulin ( p  < 0.05). Compared to controls, methylglyoxal-treated rats exhibited microalbuminuria ( p  < 0.01). Targeted proteomic analysis revealed increases in urinary secretion of pro-inflammatory parameters (MCP-1, IL-6, IL-8), specific collagen IV fragments and extracellular matrix proteins. Urine metabolomic biomarkers in methylglyoxal-treated rats were mainly associated with impairment of membrane phospholipids (8-isoprostane, 4-hydroxynonenal). Decreased levels of glutathione ( p  < 0.01) together with diminished activity of glutathione-dependent antioxidant enzymes contributed to oxidative and dicarbonyl stress. Methylglyoxal administration elevated glyoxalase 1 expression ( p  < 0.05), involved in methylglyoxal degradation. Based on comparative transcriptomic analysis of the kidney cortex, 96 genes were identified as differentially expressed (FDR < 0.05). Network analysis revealed an over-representation of genes related to oxidative stress and pro-inflammatory signalling pathways as well as an inhibition of angiogenesis suggesting its contribution to renal fibrosis. Conclusion Our results support the hypothesis that dicarbonyl stress plays a key role in renal microvascular complications. At the transcriptome level, methylglyoxal activated oxidative and pro-inflammatory pathways and inhibited angiogenesis. These effects were further supported by the results of urinary proteomic and metabolomic analyses.
Non-altered incretin secretion in women with impaired fasting plasma glucose in the early stage of pregnancy: a case control study
Backgrounds Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) may be involved in pathogenesis of gestational diabetes mellitus (GDM). The aim was to compare GLP-1 and GIP production in fasting state and during 3 h mixed meal tolerance test (MMTT) measured by mean area under the curve (AUC) between pregnant women with normal and impaired fasting glucose in an early phase of pregnancy, and healthy non-pregnant controls. Methods This study was undertaken as a case–control study. Repeated measurement of fasting plasma glucose ≥ 5.1 mmol/L and < 7.0 mmol/L during the first trimester of pregnancy and exclusion of overt diabetes according to IADSPG criteria was used to find women with impaired fasting glucose (n = 22). Age-matched controls consisted of healthy pregnant (n = 25) and non-pregnant (n = 24) women. In addition to incretins, anthropometric parameters and markers of insulin resistance and beta-cell function were assessed. Variables were summarized as median (interquartile range). Results Fasting GLP-1 and GIP concentration or their AUC during MMTT did not significantly differ between pregnant women with impaired fasting plasma glucose [GLP-1 AUC 19.0 (53.1) and GIP AUC 302 (100) pg/mL/min] and healthy pregnant women [GLP-1 AUC 16.7 (22.3) and GIP AUC 297 (142) pg/mL/min] or non-pregnant controls [GLP-1 AUC 16.8 (9.8) and for GIP AUC 313 (98) pg/mL/min]. Although women with impaired fasting glucose were more obese and showed decreased beta-cell function, there were not significant correlations between incretin production and parameters of insulin secretion, insulin resistance, or obesity. Conclusions Women with impaired fasting plasma glucose did not show altered incretin production in the first trimester of pregnancy. In contrast to type 2 diabetes, impaired incretin secretion does not seem to play a major role in the early development of GDM.
Renal Effects of DPP-4 Inhibitors: A Focus on Microalbuminuria
Incretin-based therapies represent one of the most promising options in type 2 diabetes treatment owing to their good effectiveness with low risk of hypoglycemia and no weight gain. Other numerous potential beneficial effects of incretin-based therapies have been suggested based mostly on experimental and small clinical studies including its beta-cell- and vasculo-protective actions. One of the recently emerged interesting features of dipeptidyl peptidase-4 (DPP-4) inhibitors is its possible protective effect on the diabetic kidney disease. Here, we review the renal effects of DPP-4 inhibitors with special focus on its influence on the onset and progression of microalbuminuria, as presence of microalbuminuria represents an important early sign of kidney damage and is also associated with increased risk of hypoglycemia and cardiovascular complications. Mechanisms underlying possible nephroprotective properties of DPP-4 inhibitors include reduction of oxidative stress and inflammation and improvement of endothelial dysfunction. Effects of DPP-4 inhibitors may be both glucagon-like peptide-1 (GLP-1) dependent and independent. Ongoing prospective studies focused on the nephroprotective effects of DPP-4 inhibitors will further clarify its possible role in the prevention/attenuation of diabetic kidney disease beyond its glucose lowering properties.