Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
258 result(s) for "Hamilton, Ian M."
Sort by:
State-dependent metabolic partitioning and energy conservation: A theoretical framework for understanding the function of sleep
Metabolic rate reduction has been considered the mechanism by which sleep conserves energy, similar to torpor or hibernation. This mechanism of energy savings is in conflict with the known upregulation (compared to wake) of diverse functions during sleep and neglects a potential role in energy conservation for partitioning of biological operations by behavioral state. Indeed, energy savings as derived from state-dependent resource allocations have yet to be examined. A mathematical model is presented based on relative rates of energy deployment for biological processes upregulated during either wake or sleep. Using this model, energy savings from sleep-wake cycling over constant wakefulness is computed by comparing stable limit cycles for systems of differential equations. A primary objective is to compare potential energy savings derived from state-dependent metabolic partitioning versus metabolic rate reduction. Additionally, energy conservation from sleep quota and the circadian system are also quantified in relation to a continuous wake condition. As a function of metabolic partitioning, our calculations show that coupling of metabolic operations with behavioral state may provide comparatively greater energy savings than the measured decrease in metabolic rate, suggesting that actual energy savings derived from sleep may be more than 4-fold greater than previous estimates. A combination of state-dependent metabolic partitioning and modest metabolic rate reduction during sleep may enhance energy savings beyond what is achievable through metabolic partitioning alone; however, the relative contribution from metabolic partitioning diminishes as metabolic rate is decreased during the rest phase. Sleep quota and the circadian system further augment energy savings in the model. Finally, we propose that state-dependent resource allocation underpins both sleep homeostasis and the optimization of daily energy conservation across species. This new paradigm identifies an evolutionary selective advantage for the upregulation of central and peripheral biological processes during sleep, presenting a unifying construct to understand sleep function.
South Arabia’s prehistoric monument landscape shows social resilience to climate change
In arid regions across northern Africa, Asia and Arabia, ancient pastoralists constructed small-scale stone monuments of varying form, construction, placement, age, and function. Classification studies of each type have inhibited a broader model of their collective and enduring role within desert socio-ecosystems. Our multivariate analysis of 371 archaeological monuments in the arid Dhofar region of Oman identifies environmental and cultural factors that influenced variable placement and construction across a 7000-year history. Our results show that earlier monuments were built by larger, concurrent groups during the Holocene Humid Period (10,000–6000 cal BP). With increasing aridification, smaller groups constructed monuments and eventually switched to building them in repetitive visits. Our model emphasizes the core role of monuments as a flexible technology in social resilience among desert pastoralists.
Coupled Demographic Dynamics of Herds and Households Constrain Livestock Population Growth in Pastoral Systems
One of the dominant narratives about pastoral systems is that livestock populations have the potential to grow exponentially and destroy common-pool grazing resources. However, longitudinal, interdisciplinary research has shown that pastoralists are able to sustainably manage common-pool resources and that livestock populations are not growing exponentially. The common explanation for limits on livestock population growth is that reoccurring droughts, diseases, and other disasters keep populations in check. However, we hypothesize that coupled demographic processes at the level of the household also may keep livestock population growth in check. Our hypothesis is that two mechanisms at the herd-household level explain why livestock populations grow much slower in pastoral systems than predicted by conventional Malthusian models. The two mechanisms are: (1) the domestic cycle of the household, and (2) the effects of scale and stochasticity. We developed an agent-based model of a pastoral system to evaluate the hypothesis. The results from our simulations show that the couplings between herd and household do indeed constrain the growth of both human and livestock populations. In particular, the domestic cycle of the household limits herd growth and ultimately constrains the growth of livestock populations. The study shows that the misfortunes that affect individual households every day cumulatively have a major impact on the growth of human and livestock populations.
Reproductive sharing in relation to group and colony-level attributes in a cooperative breeding fish
The degree to which group members share reproduction is dictated by both within-group (e.g. group size and composition) and between-group (e.g. density and position of neighbours) characteristics. While many studies have investigated reproductive patterns within social groups, few have simultaneously explored how within-group and between-group social structure influence these patterns. Here, we investigated how group size and composition, along with territory density and location within the colony, influenced parentage in 36 wild groups of a colonial, cooperatively breeding fish Neolamprologus pulcher. Dominant males sired 76% of offspring in their group, whereas dominant females mothered 82% of offspring in their group. Subordinate reproduction was frequent, occurring in 47% of sampled groups. Subordinate males gained more paternity in groups located in high-density areas and in groups with many subordinate males. Dominant males and females in large groups and in groups with many reproductively mature subordinates had higher rates of parentage loss, but only at the colony edge. Our study provides, to our knowledge, the first comprehensive quantification of reproductive sharing among groups of wild N. pulcher, a model species for the study of cooperation and social behaviour. Further, we demonstrate that the frequency of extra-pair parentage differs across small social and spatial scales.
Contingent movement and cooperation evolve under generalized reciprocity
How cooperation and altruism among non-relatives can persist in the face of cheating remains a key puzzle in evolutionary biology. Although mechanisms such as direct and indirect reciprocity and limited movement have been put forward to explain such cooperation, they cannot explain cooperation among unfamiliar, highly mobile individuals. Here we show that cooperation may be evolutionarily stable if decisions taken to cooperate and to change group membership are both dependent on anonymous social experience (generalized reciprocity). We find that a win-stay, lose-shift rule (where shifting is either moving away from the group or changing tactics within the group after receiving defection) evolves in evolutionary simulations when group leaving is moderately costly (i.e. the current payoff to being alone is low, but still higher than that in a mutually defecting group, and new groups are rarely encountered). This leads to the establishment of widespread cooperation in the population. If the costs of group leaving are reduced, a similar group-leaving rule evolves in association with cooperation in pairs and exploitation of larger anonymous groups. We emphasize that mechanisms of assortment within populations are often behavioural decisions and should not be considered independently of the evolution of cooperation.
Tug-of-war over reproduction in a cooperatively breeding cichlid
In group-living animals, dominants may suppress subordinate reproduction directly and indirectly, thereby skewing reproduction in their favour. In this study, we show experimentally that this ability ('power') is influenced by resource distribution and the body size difference between unrelated dominants and subordinates in the cichlid Neolamprologus pulcher. Reproduction was strongly skewed towards the dominant female, due to these females producing more and larger clutches and those clutches surviving egg eating better than those of subordinate females, but was not so when subordinates defended a patch. If breeding shelters were provided in two patches, subordinate females were more likely to exclusively defend a patch against the dominant female and breed, compared to when the same breeding resource was provided in one patch. Relatively large subordinate females were more likely to defend a patch and reproduce. Females also directly interfered with each other's reproduction by eating the competitors' eggs, at which dominants were more successful. Although dominant females benefited from subordinate females due to alloparental care and an increase in egg mass, they also showed costs due to reduced growth in the presence of subordinates. The results support the view that the dominant's power to control subordinate reproduction determines reproductive partitioning, in agreement with the predictions from tug-of-war models of reproductive skew.
Social status influences responses to unfamiliar conspecifics in a cooperatively breeding fish
In group living animals, individuals may visit other groups. The costs and benefits of such visits for the members of a group will depend on the attributes and intentions of the visitor, and the social status of responding group members. Using wild groups of the cooperatively breeding cichlid fish (Neolamprologus pulcher), we compared group member responses to unfamiliar 'visiting' conspecifics in control groups and in experimentally manipulated groups from which a subordinate the same size and sex as the visitor was removed. High-ranking fish were less aggressive towards visitors in removal groups than in control groups; low-ranking subordinates were more aggressive in the removal treatment. High-ranking females and subordinates the same size and sex as the visitor responded most aggressively toward the visitor in control groups. These results suggest that visitors are perceived as potential group joiners, and that such visits impose different costs and benefits on current group members.
Unrelated helpers will not fully compensate for costs imposed on breeders when they pay to stay
Unrelated subordinates may invest in costly help to avoid being evicted from groups (the 'pay-to-stay' hypothesis). However, the effectiveness of eviction to enforce help should depend on its being applied accurately and on the costs it imposes on both dominants and subordinates. The relative cost of being evicted is a function of the population frequency of eviction when population growth is limited by density-dependent factors. We describe a stage-structured pay-to-stay model incorporating density-dependent population growth, costly eviction and occasional errors. Breeders demand some amount of help and evict subordinates that do not provide it. Helpers decide on the amount of help they will provide. The threat of eviction alone is sufficient to enforce helping. However, helping will not be favoured if helpers do not impose costs on breeders. The amount of help provided is less than the cost that subordinates impose upon breeders, when any help is provided. Thus, the net fitness effect of a helper under pay-to-stay alone is negative, even if it is investing in cooperative behaviour. Constraints on dispersal have no effect on the amount of help, although they may influence the tolerance threshold of breeders and group stability, depending on the mechanism of density dependence.
Evolutionary causes and consequences of consistent individual variation in cooperative behaviour
Behaviour is typically regarded as among the most flexible of animal phenotypic traits. In particular, expression of cooperative behaviour is often assumed to be conditional upon the behaviours of others. This flexibility is a key component of many hypothesized mechanisms favouring the evolution of cooperative behaviour. However, evidence shows that cooperative behaviours are often less flexible than expected and that, in many species, individuals show consistent differences in the amount and type of cooperative and non-cooperative behaviours displayed. This phenomenon is known as ‘animal personality’ or a ‘behavioural syndrome’. Animal personality is evolutionarily relevant, as it typically shows heritable variation and can entail fitness consequences, and hence, is subject to evolutionary change. Here, we review the empirical evidence for individual variation in cooperative behaviour across taxa, we examine the evolutionary processes that have been invoked to explain the existence of individual variation in cooperative behaviour and we discuss the consequences of consistent individual differences on the evolutionary stability of cooperation. We highlight that consistent individual variation in cooperativeness can both stabilize or disrupt cooperation in populations. We conclude that recognizing the existence of consistent individual differences in cooperativeness is essential for an understanding of the evolution and prevalence of cooperation.
Emergent sustainability in open property regimes
Current theoretical models of the commons assert that common-pool resources can only be managed sustainably with clearly defined boundaries around both communities and the resources that they use. In these theoretical models, open access inevitably leads to a tragedy of the commons. However, inmany open-access systems, use of common-pool resources seems to be sustainable over the long term (i.e., current resource use does not threaten use of common-pool resources for future generations). Here, we outline the conditions that support sustainable resource use in open property regimes. We use the conceptual framework of complex adaptive systems to explain how processes within and couplings between human and natural systems can lead to the emergence of efficient, equitable, and sustainable resource use. We illustrate these dynamics in eight case studies of different social–ecological systems, including mobile pastoralism, marine and freshwater fisheries, swidden agriculture, and desert foraging. Our theoretical framework identifies eight conditions that are critical for the emergence of sustainable use of common-pool resources in open property regimes. In addition, we explain how changes in boundary conditions may push open property regimes to either common property regimes or a tragedy of the commons. Our theoretical model of emergent sustainability helps us to understand the diversity and dynamics of property regimes across a wide range of social–ecological systems and explains the enigma of open access without a tragedy. We recommend that policy interventions in such self-organizing systems should focus on managing the conditions that are critical for the emergence and persistence of sustainability.